Закон Кулона простыми словами
Iddc.ru

Все об электрике

Закон Кулона простыми словами

Закон Кулона простыми словами

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н 2 *м 2 /Кл 2 . Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е= 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F21 и R21.

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

Закон Кулона

Закон Кулона количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установлен при помощи эксперимента и не следует ни из какого другого закона природы. Он сформулирован для неподвижных точечных зарядов в вакууме. В реальности точечных зарядов не существует, но такими можно считать заряды, размеры которых значительно меньше расстояния между ними. Сила взаимодействия в воздухе почти не отличается от силы взаимодействия в вакууме (она слабее менее чем на одну тысячную).

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Если обозначить модули зарядов через |q1| и |q2|, то закон Кулона можно записать в следующей форме:

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц.

Полная формула закона Кулона:

( F ) — Сила Кулона

( q_1 q_2 ) — Электрический заряд тела

( r ) — Расстояние между зарядами

( varepsilon_0 = 8,85*10^ <-12>) — Электрическая постоянная

( varepsilon ) — Диэлектрическая проницаемость среды

( k = 9*10^9 ) — Коэффициент пропорциональности в законе Кулона

Силы взаимодействия подчиняются третьему закону Ньютона: ( vec_<12>=vec_ <21>) . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Отметим, чтоб выполнялся закон Кулона необходимо 3 условия:

  • Точечность зарядов — то есть расстояние между заряженными телами много больше их размеров.
  • Неподвижность зарядов. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд .
  • Взаимодействие зарядов в вакууме.
Читать еще:  Выбираем сушильную машину для белья – что важно знать?

В Международной системе СИ за единицу заряда принят кулон (Кл) .

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А . Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Заряженный шарик приводят в соприкосновение с точно таким же незаряженным шариком. Находясь на расстоянии ( r = 15 ) см, шарики отталкиваются с силой ( F = 1 ) мН. Каков был первоначальный заряд заряженного шарика?

При соприкосновении заряд разделится ровно пополам (шарики одинаковые).По данной силе взаимодействия можем определить заряды шариков после соприкосновения (не забудем, что все величины надо представить в единицах СИ – ( F = 10^ <-3>) Н, ( r = 0.15 ) м):

Тогда до соприкосновения заряд заряженного шарика был вдвое больше: ( q_1=2cdot 5cdot 10^<-8>=10^ <-7>)

( q_1=10^<-7>=10cdot 10^ <-6>) Кл, или 10 мкКл.

Поскольку шарики одинаковы, то на каждый шарик действуют одинаковые силы: сила тяжести ( displaystyle ), сила натяжения нити ( displaystyle )и сила кулоновского взаимодействия (отталкивания) ( displaystyle ). На рисунке показаны силы, действующие на один из шариков. Поскольку шарик находится в равновесии, сумма всех сил, действующих на него, равна 0. Кроме того, сумма проекций сил на оси ( displaystyle ) и ( displaystyle )равна 0:

Решим совместно эти уравнения. Разделив первое равенство почленно на второе, получим:

Так как угол ( displaystyle ) мал, то

Тогда выражение примет вид:

Сила ( displaystyle )по закону Кулона равна: ( displaystyle> ). Подставим значение ( displaystyle )в выражение (52):

откуда выразим в общем виде искомый заряд:

После подстановки численных значений будем иметь:

Предлагается самостоятельно проверить размерность для расчетной формулы .

Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца

Теория к заданию 14 из ЕГЭ по физике

Закон Кулона

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока $1$А за $1$с.

То есть $1$ Кл$= 1А·с$.

Заряд в $1$ Кл очень велик. Сила взаимодействия двух точечных зарядов по $1$ Кл каждый, расположенных на расстоянии $1$ км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой $1$ т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в $1$ А вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

Часто его записывают в виде $k=<1>/<4πε_0>$, где $ε_0=8.85×10^<-12>Кл^2$/$H·м^2$ – электрическая постоянная.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_<0>$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Энергия поля конденсатора

Энергия заряженного конденсатора выражается формулами

которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора.

Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:

где $ε$ — диэлектрическая проницаемость среды, $ε_0$ — электрическая постоянная.

Сила тока

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Сила электрического тока — это величина ($I$), характеризующая упорядоченное движение электрических зарядов и численно равная количеству заряда $∆q$, протекающего через определенную поверхность $S$ (поперечное сечение проводника) за единицу времени:

Итак, чтобы найти силу тока $I$, надо электрический заряд $∆q$, прошедший через поперечное сечение проводника за время $∆t$, разделить на это время.

Сила тока зависит от заряда, переносимого каждой частицей, скорости их направленного движения и площади поперечного сечения проводника.

Рассмотрим проводник с площадью поперечного сечения $S$. Заряд каждой частицы $q_0$. В объеме проводника, ограниченном сечениями $1$ и $2$, содержится $nS∆l$ частиц, где $n$ — концентрация частиц. Их общий заряд $q=q_<0>nS∆l$. Если частицы движутся со средней скоростью $υ$, то за время $∆t=<∆l>/<υ>$ все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение $2$. Сила тока, следовательно, равна:

В СИ единица силы тока является основной и носит название ампер (А) в честь французского ученого А. М. Ампера (1755-1836).

Силу тока измеряют амперметром. Принцип устройства амперметра основан на магнитном действии тока.

Оценка скорости упорядоченного движения электронов в проводнике, проведенная по формуле для медного проводника с площадью поперечного сечения $1мм^2$, дает весьма незначительную величину — $∼0.1$ мм/с.

Закон Ома для участка цепи

Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Закон Ома выражает связь между тремя величинами, характеризующими протекание электрического тока в цепи: силой тока $I$, напряжением $U$ и сопротивлением $R$.

Закон этот был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя. В приведенной формулировке он называется также законом Ома для участка цепи. Математически закон Ома записывается в виде следующей формулы:

Зависимость силы тока от приложенной разности потенциалов на концах проводника называется вольт-амперной характеристикой (ВАХ) проводника.

Для любого проводника (твердого, жидкого или газообразного) существует своя ВАХ. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников, заданная законом Ома $I=/$, и растворов электролитов. Знание ВАХ играет большую роль при изучении тока.

Читать еще:  Вибратор для бетона своими руками

Закон Ома — это основа всей электротехники. Из закона Ома $I=/$ следует:

  1. сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
  2. сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.

Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, графики зависимости силы тока от напряжения при постоянном сопротивлении и силы тока от сопротивления представлены на рисунке. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление $R$, во втором — аккумулятор и переменное сопротивление (магазин сопротивлений).

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ/$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^<-1>м^<-1>$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^<-6>$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^<-2>$) Ом$·$м$м^2$/м, диэлектрики — в $10^<15>-10^<20>$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при $0°$С:

Зависимость удельного сопротивления проводников от температуры выражается формулой:

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=(<1>/<273>)K^<-1>$. Для растворов электролитов $α

Закон Кулона простым языком

Взаимодействия электрических зарядов исследовали ещё до Шарля Кулона. В частности, английский физик Кавендиш в своих исследованиях пришёл к выводу, что неподвижные заряды при взаимодействии подчиняются определённому закону. Однако он не обнародовал своих выводов. Повторно закон Кулона был открыт французским физиком, именем которого был назван этот фундаментальный закон.

Рисунок 1. Закон Кулона

История открытия

Эксперименты с заряженными частицами проводили много физиков:

  • Г. В. Рихман;
  • профессор физики Ф. Эпинус;
  • Д. Бернулли;
  • Пристли;
  • Джон Робисон и многие другие.

Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.

Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).

Рис. 2. Крутильные весы

У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10 -9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1 º . Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.

Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.

Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.

Формулировка

Кулон исследовал взаимодействие между шариками, ничтожно малых размеров, по сравнению с расстояниями между ними. В физике такие заряженные тела называются точечными. Другими словами, под определение точечных зарядов подпадают такие заряженные тела, если их размерами, в условиях конкретного эксперимента, можно пренебречь.

Для точечных зарядов справедливо утверждение: Силы взаимодействия между ними направлены вдоль линии, проходящей через центры заряженных тел. Абсолютная величина каждой силы прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними (см. рис. 3). Данную зависимость можно выразить формулой: |F1|=|F2|=(ke*q1*q2) / r 2

Рис. 3. Взаимодействие точечных зарядов

Остаётся добавить, что векторы сил направлены друг к другу для разноименных зарядов, и противоположно, в случае с одноимёнными зарядами. То есть между разноимёнными зарядами действует электрическое притяжение, а между одноимёнными – отталкивание.

Таким образом, закон Кулона описывает взаимодействие между двумя электрическими зарядами, которое лежит в основе всех электромагнитных взаимодействий.

Для того чтобы действовал сформулированный выше закон, необходимо выполнение следующий условий:

  • соблюдение точечности зарядов;
  • неподвижность заряженных тел;
  • закон выражает зависимости между зарядами в вакууме.

Границы применения

Описанная выше закономерность при определённых условиях применима для описания процессов квантовой механики. Правда, закон Кулона формулируется без понятия силы. Вместо силы используется понятие потенциальной энергии кулоновского взаимодействия. Закономерность получена путём обобщения экспериментальных данных.

Следует отметить, что на сверхмалых расстояниях (при взаимодействиях элементарных частиц) порядка 10 — 18 м проявляются электрослабые эффекты. В этих случаях закон Кулона, строго говоря, уже не соблюдается. Формулу можно применять с учётом поправок.

Нарушение закона Кулона наблюдается и в сильных электромагнитных полях (порядка 10 18 В/м), например поблизости магнитаров (тип электронных звёзд). В такой среде кулоновский потенциал уменьшается не обратно пропорционально, а экспоненциально.

Кулоновские силы подпадают под действие третьего закона Ньютона: F1 = – F2. Они используются для описания законов всемирного тяготения. В этом случае формула приобретает вид: F = ( m1* m2 ) / r 2 , где m1 и m2 – массы взаимодействующих тел, а r – расстояние между ними.

Закон Кулона стал первым открытым количественным фундаментальным законом, обоснованным математически. Его значение в исследованиях электромагнитных явлений трудно переоценить. С момента открытия и обнародования закона Кулона началась эра изучения электромагнетизма, имеющего огромное значение в современной жизни.

Коэффициент k

Формула содержит коэффициент пропорциональности k, который для согласования соразмерностей в международной системе СИ. В этой системе единицей измерения заряда принято называть кулоном (Кл) – заряд, проходящий за 1 секунду сквозь проводник, где силы тока составляет 1 А.

Коэффициент k в СИ выражается следующим образом: k = 1/4πε, где ε – электрическая постоянная: ε = 8,85 ∙10 -12 Кл 2 /Н∙м 2 . Выполнив несложные вычисления, мы находим: k = 9×10 9 H*м 2 / Кл 2 . В метрической системе СГС k =1.

На основании экспериментов было установлено, что кулоновские силы, как и принцип суперпозиции электрических полей, в законах электростатики описывают уравнения Максвелла.

Если между собой взаимодействуют несколько заряженных тел, то в замкнутой системе результирующая сила этого взаимодействия равняется векторной сумме всех заряженных тел. В такой системе электрические заряды не исчезают – они передаются от тела к телу.

Закон Кулона в диэлектриках

Выше было упомянуто, что формула, определяющая зависимость силы от величины точечных зарядов и расстояния между ними, справедлива для вакуума. В среде сила взаимодействия уменьшается благодаря явлению поляризации. В однородной изотопной среде уменьшение силы пропорционально определённой величине, характерной для данной среды. Эту величину называют диэлектрической постоянной. Другое название – диэлектрическая проницаемость. Обозначают её символом ε. В этом случае k = 1/4πεε.

Диэлектрическая постоянная воздуха очень близка к 1. Поэтому закон Кулона в воздушном пространстве проявляется так же как в вакууме.

Читать еще:  Выбираем ИБП для котла

Интересен тот факт, что диэлектрики могут накапливать электрические заряды, которые образуют электрическое поле. Проводники лишены такого свойства, так как заряды, попадающие на проводник, практически сразу нейтрализуются. Для поддержания электрического поля в проводнике необходимо непрерывно подавать на него заряженные частицы, образуя замкнутую цепь.

Применение на практике

Вся современная электротехника построена на принципах взаимодействия кулоновских сил. Благодаря открытию Клоном этого фундаментального закона развилась целая наука, изучающая электромагнитные взаимодействия. Понятие термина электрического поля также базируется на знаниях кулоновских сил. Доказано, что электрическое поле неразрывно связано с зарядами элементарных частиц.

Грозовые облака не что иное как скопление электрических зарядов. Они притягивают к себе индуцированные заряды земли, в результате чего появляется молния. Это открытие позволило создавать эффективные молниеотводы для защиты зданий и электротехнических сооружений.

На базе электростатики появилось много изобретений:

  • конденсатор;
  • различные диэлектрики;
  • антистатические материалы для защиты чувствительных электронных деталей;
  • защитная одежда для работников электронной промышленности и многое другое.

На законе Кулона базируется работа ускорителей заряженных частиц, в частности, функционирование Большого адронного коллайдера (см. Рис. 4).

Рис. 4. Большой адронный коллайдер

Ускорение заряженных частиц до околосветовых скоростей происходит под действием электромагнитного поля, создаваемого катушками, расположенными вдоль трассы. От столкновения распадаются элементарные частицы, следы которых фиксируются электронными приборами. На основании этих фотографий, применяя закон Кулона, учёные делают выводы о строении элементарных кирпичиков материи.

Использованная литература:

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов.
  3. Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм.

Закон Кулона формулы и определение

В статье расскажем про электрические заряды и электрификации тел, аддитивность полей и определение электрического поля, подробно разберем закон Кулона и электрический диполь. В конце статьи будет разобранная задача на электрическое поле.

Электрические заряды и электрификация тел

Электрические заряды, положительные и отрицательные, квантуются, то есть имеют наименьшее значение, которое дальше невозможно разделить. Нагрузки не могут быть созданы или уничтожены в том смысле, что общая нагрузка в любом процессе остается постоянной. Когда атом не ионизирован, его полный заряд равен нулю. Атомы с избыточным отрицательным зарядом называются анионами, а с недостатком отрицательного заряда (с избыточным положительным зарядом) мы называем катионами.

Электрификация тел заключается в переносе нагрузки с одного из них на другой. Проще говоря, тела могут быть наэлектризованы их взаимным трением, что связано с реконструкцией двойного электрического слоя, расположенного на поверхности каждого из этих тел. Другим способом электрификации является электрификация индукцией, как показано на рисунках ниже. Здесь металлические сферы (белые), установленные на изоляторе (черный стержень), подвергаются электрификации. Разделение зарядов происходит при приближении к отрицательно заряженному изоляционному стержню, наэлектризованному трением о ткань.

В системе СИ единица измерения составляет 1 кулон (1 С). Статический заряд составляет порядка 10 -6 С (микрокульм, около 10 13 электронов). Заряд электрона составляет 1,602 × 10 -19 с .

Формулировка и объяснение закона Кулона

Закон Кулона (1736 — 1806) — закон, описывающий силу взаимодействия между точечными электрическими зарядами Q и q, находящимися на расстоянии R и в покое друг с другом.

Сила взаимодействия таких зарядов или кулоновская сила описывается формулой:

Формула Кулона автоматически выражает тот факт, что высвобожденные нагрузки отталкивают друг друга.

Кулон показал, что для точечных нагрузок сила удара равна:

В более поздних, очень тщательных экспериментах было показано, что квадрат в знаменателе равен 2 с точностью 2 ± 2 × 10 -16 . Направление кулоновской силы совпадает с направлением прямой, соединяющей два точечных заряда. Уравнение Кулона применимо только к случаю точечных нагрузок. Когда распределение нагрузки является пространственным, то должна быть выполнена соответствующая сумма или интегрирование. Помимо того, что закон Кулона применяется только к точечным нагрузкам, он описывает силу, действующую между ними только тогда, когда заряды находятся в покое друг с другом.

Закон Кулона в диэлектриках

Уменьшение напряженности поля в диэлектриках в ε-кратном направлении имеет большое практическое значение. Одним из основных является уменьшение кулоновской силы в ε-кратном размере при погружении взаимодействующих зарядов в диэлектрик:

Благодаря этому эффекту возможно растворить вещество с ионными связями в растворителях с высокой проницаемостью ε. В частности, возможно засоление посуды, поскольку в воде с огромным значением ε = 81 кристалл NaCl, состоящий из катионов Na + и анионов Cl — , поддерживаемый кулоновскими силами, «распадается» при переходе в раствор электролита.

Определение электрического поля (Е)

Электрическое поле (напряженность поля) E в данной точке определяется как значение, равное отношению силы F, действующей на положительный испытательный заряд q, к значению нагрузки:

Движение заряженных частиц в поле происходит под действием силы F = Q*E.

Аддитивность полей

Поле E является аддитивным вектором, что означает, что результирующее электрическое поле представляет собой векторную сумму полей E 1 , E 2 , E 3 …, полученных из отдельных зарядов:

Линии напряженности электрических полей

Концепция силовых линий поля была также введена Майклом Фарадеем (1791-1867). Линии напряженности поля представляют собой воображаемые кривые в пространстве, находящиеся в каждой точке, касающейся вектора E в этой точке. Это также означает, что в каждой точке линии поля имеется касательный вектор силы, действующий в этом поле для испытательной нагрузки (небольшой положительный заряд). Как показано на рисунке ниже, силовая линия — это траектория положительного испытательного заряда (маленький красный шарик), движущегося в поле E , причем сила F является результирующей (векторной суммой) двух сил: силы, отталкивающей испытательный заряд от положительного заряда F Q, и силы притяжения испытательная нагрузка на отрицательный заряд F q. Такая картина силовых линий верна только тогда, когда пренебрегают силами инерции (центробежными), возникающими из-за ненулевой массы груза. Линии напряженности поля никогда не пересекаются друг с другом. Представляя силовые линии, принимается соглашение о вытягивании, согласно которому плотность силовых линий пропорциональна напряженности поля в этом месте. Силовые линии в окрестности системы двух точечных нагрузок, положительной и отрицательной, одинакового абсолютного значения показаны на рисунке:

Один заряд, помещенный в вакуум, окружен радиальной системой силовых линий.

Электрический диполь

Электрический диполь представляет собой жесткую систему из двух точечных нагрузок + Q и -Q, удаленных друг от друга на 1. Диполь помещается в однородное электрическое поле E, так что вектор E образует угол θ с линией, соединяющей два заряда, называемой осью диполя. Сила F 1 = QE направлена ​​в сторону поля, а сила F 2 = — QE в противоположном направлении. Обе эти силы создают пару сил, создающих момент силы:

Произведение заряда Ql на расстояние Q называется дипольным моментом. Вектор дипольного момента направлен от отрицательного к положительному заряду (в отличие от вектора для силовых линий поля).

Момент силы, действующей на диполь, выражается в виде векторного произведения.

Значение этого вектора:

Если электрическое поле не является однородным, то диполь действует не только как крутящий момент, но и как результирующая сила. Причина этого заключается в том, что оба дипольных заряда находятся в полях немного различной интенсивности, и силы, действующие на эти заряды, не уравновешены.

Ненулевым электрическим дипольным моментом обладают такие молекулы, как H2O, CO, …

Симметричные молекулы, например O2, N2, H2, … не имеют длительных дипольных моментов.

Единицей дипольного момента в системе СИ является C · m (кулон · метр). Поскольку это очень большая единица, в литературе обычно используется единица, называемая debay (D), которая происходит из системы CGS.

Два элементарных заряда (равных зарядам электрона или протона), разнесенных друг от друга на расстоянии 1 ангстрем (10 -10 м), создают дипольный момент со значением:

Задача

Найти электрическое поле E, создаваемое диполем. Для простоты находим это поле в плоскости, перпендикулярной оси диполя и проходящей через его центр:

Поля от положительных и отрицательных зарядов обозначены E + и E — соответственно. Векторная сумма этих двух полей образует результирующее поле E = E+ + E_. Из-за симметричного положения точки, где мы исследуем поле, длины обоих E+ и E_ векторов — одинаковы:

Вертикальные компоненты полей E+ и E_ компенсируют друг друга, а сумма горизонтальных компонентов дает длину E искомого вектора E :

где p = Ql — дипольный момент диполя. Для r >> l (вдали от оси диполя) значение поля E равно:

Мы видим, что поле вокруг диполя исчезает с увеличением расстояния быстрее (как 1 / r 3 ), чем поле вокруг одиночного заряда, которое исчезает как 1 / r 2 .

Ссылка на основную публикацию
Adblock
detector