Неисправности в электроустановках и причины их возникновения
Iddc.ru

Все об электрике

Неисправности в электроустановках и причины их возникновения

Какие бывают повреждения в электроустановках и в чем их причины?

Снабжение потребителей электрической энергии имеет постоянный характер, но может прерываться для проведения каких-либо технологических операций (ремонтов, испытаний и т.д.). Но, наряду с плановым выводом в ремонт, питание электроустановок напряжением установленной величины может нарушаться и по другим причинам. Как правило, причиной внеплановых перебоев в питании становятся повреждения в электроустановках, обусловленные действием каких-либо физических факторов.

Чем опасны повреждения в электроустановках?

Следует отметить, что в результате повреждений электроустановок возникает угроза поражения персонала электрическим током. Так, в случае перехода потенциала на корпус оборудования человек может пострадать от напряжения прикосновения в случае отсутствия защитного заземления в электроустановке, некорректно настроенного реле или отсутствия защитных ограждений.

Рис. 1: Напряжение прикосновения

Посмотрите на рисунок, здесь приведен пример, когда на корпусе присутствует потенциал Uпр и при касании человека к корпусу, через него будет протекать ток Iпр, зависящий от величины напряжения Uпр и сопротивления человека R.

Подобный эффект возможен при падении провода на землю, но угрозу, в этом случае, будет нести уже шаговое напряжение.

По отношению к эксплуатации электроустановок, приборов и оборудования, повреждения опасны и влиянием на линии, и на все устройства, подключенные к сети. Из-за чего может произойти перегорание деталей, нарушение изоляции запитываемых приборов. А при серьезных повреждениях, возможно возгорание электрической дуги и термическое разрушение элементов электроустановки. Снижение сопротивления изоляции приводит как к критическим повреждениям, на которые должны реагировать защиты, так и к скрытым, которые могут проявиться со временем или в ходе каких-либо технологических операций.

Какие бывают виды повреждений в электроустановках?

Под повреждением в электроустановках понимается нарушение их нормальной работы, обусловленное каким-либо аварийным событием (обрывом, схлестыванием, перегоранием проводящих элементов и т.д.). Как правило, при этом происходит изменение установленной величины тока, напряжения или частоты от заявленной поставщиком. Все нарушения в работе электроустановок, с точки зрения физического процесса, можно разделить на такие категории:

  • Короткое замыкание – представляет собой такую ситуацию, когда в силу протекания каких-либо процессов из цепи снабжения исключаются линии, устройства или электрические аппараты. Электрический ток начинает протекать без нагрузки к источнику. Из-за чего величина тока мгновенно увеличивается в десятки раз, и он способен нарушить изоляцию токоведущих частей и вызвать ряд разрушительных процессов. По цепи протекания подразделяется на однофазные, межфазные, замыкание фаз на землю и замыкания с нейтралью трансформатора. Рис. 2: Примеры коротких замыканий
  • Отсутствие напряжения – характеризуется такими отказами в работе оборудования, при которых нарушается целостность цепи в одной или сразу во всех фазах. Может возникать из-за сбоев в работе автоматического выключателя, обусловленных безосновательным протеканием оперативного тока в цепях управления. Также при обрыве проводов без касания соседних токоведущих или заземленных частей. В случае отсутствия напряжения в одном проводнике происходит перекос фаз, из-за чего перегреваются обмотки трансформаторов, генераторов и электрических машин.
  • Просадка напряжения – характеризуется падением данной величины, из-за чего нарушается нормальная работа электроустановок, могут не включаться какие-либо аппараты, значительно снижается срок их эксплуатации. Низкое напряжение может обуславливаться окислением контактов, межвитковыми замыканиями в трансформаторах, возникновением большой нагрузки и т.д.
  • Повышение напряжения – такое повреждение характеризуется мгновенным нарастанием его величины до того уровня, при котором могут повредиться устройства, изоляция электрооборудования и возникает угроза персоналу. Как правило, обуславливается атмосферными разрядами, несимметричными режимами, переходом высокого напряжения на низкую обмотку или другими режимами.
  • Перекрытие и пробой изоляции – характеризуется снижением диэлектрических свойств, как самого изоляционного слоя, так и поверхности изоляторов, которое может произойти из-за механических повреждений, загрязнения или естественного старения.
  • Перегревы и пережоги – возникают из-за несоответствия величины протекающего тока сечению проводника или при дуговых и разрядных явлениях в электроустановках. Могут привести к повреждению изоляции, перегоранию проводов или шлейфов в местах присоединения. Рисунок 3: Пережог провода

Посмотрите на рисунок, некоторые повреждения в электроустановках, если их вовремя не локализировать, сопровождаются сразу несколькими процессами. Здесь приведен пример повышения напряжения из-за атмосферного разряда, от которого произошел пробой изолятора с последующим пережогом провода.

Причины возникновения повреждений

Всем повреждениям в электроустановках предшествуют определенные причины. Некоторые из них накапливаются в течении достаточно длительного периода, а какие-то дают о себе знать сразу после возникновения. К основным причинам относят:

  • Неверные действия персонала, которые нарушают безопасную эксплуатацию. Это и коммутация под нагрузкой, и подача напряжения на заземленные участки. Причиной таких действий, как правило, является незнание однолинейной схемы или обычная невнимательность.
  • Естественное старение оборудования и его отдельных элементов. Из-за чего конструктивные части различных устройств утрачивают свои основные характеристики. В качестве примера можно привести старение изоляции и последующее повреждение кабеля.
  • Коммутационные, режимные или атмосферные перегрузки. В зависимости от источника, вносящего дисбаланс, происходит значительное отклонение какого-то электрического параметра с последующим повреждением.
  • Механические воздействия – возникают как от попадания сторонних предметов, так и от чрезмерной статической нагрузки, температурных колебаний или динамических ударов тока.

Стоит отметить, что некоторые из причин можно своевременно фиксировать при помощи испытаний и прочих регламентных работ. А те причины повреждений, которые возникают случайно, необходимо своевременно выявлять и локализировать, дабы минимизировать негативные последствия.

Способы локализации и борьбы с повреждениями

Большинство повреждений электроустановок останавливаются посредством защитных отключений. При этом устройства автоматического отключения (выключатели, автоматы и т.д.) отсекают определенный участок или конкретное оборудование, что позволяет прекратить разрушающее воздействие и на них, и на соседние устройства. Для такого отсечения выключатели приводятся в действие посредством систем релейной защиты, реагирующих на различные повреждения в электроустановках. К ним относятся, токовые реле, дифференциальные, дистанционные, тепловые защиты, реле контроля напряжения, фаз и прочие, получающие информацию о состоянии системы через трансформаторы тока, напряжения и другие устройства.

Наилучшим способом борьбы с разнообразными повреждениями в электроустановках и последствиями от них является предупреждение аварий посредством своевременного проведения осмотров электроустановок, испытаний, технического обслуживания и ремонта. При соблюдении сроков и всех работ, предусмотренных НД, можно предупредить львиную долю всех повреждений.

Помимо прогнозируемых повреждений в электроустановках существуют случайные, к примеру, те же атмосферные перенапряжения. Для борьбы с ними устанавливаются средства борьбы с перенапряжениями (ОПН и разрядники), монтируются защитные проводники по всей протяженности линии.

Причины аварии и отказов на подстанциях и в электрических сетях

Важнейшей обязанностью работников эксплуатации подстанций является обеспечение надежной работы электрического оборудования и бесперебойного электроснабжения потребителей. Все случаи нарушении нормальных режимов работы подстанций (автоматические отключения оборудования при коротких замыканиях, ошибочные действия персонала, перерывы в электроснабжении потребителей и др.) рассматриваются как аварии или отказы в работе в зависимости ох их характера, степени повреждения оборудования и тех последствий, к которым они привели.

Аварии на подстанциях могут произойти в результате неожиданных повреждений оборудования, нарушений в работе оборудования от возможных перенапряжений и воздействий электрической дуги, отказов в работе устройств релейной защиты, автоматики, аппаратов вторичной коммутации, ошибочных действий персонала (оперативного, ремонтного, производственных служб).

Причинами неожиданных повреждений оборудования. как правило являются некачественный монтаж и ремонт оборудования (например, отказы выключателей из-за плохой регулировки переда точных механизмов и приводов), неудовлетворительная эксплуатация оборудования, неудовлетворительный уход, например, за контактными соединениями, что приводит к их перегреву с последующим разрывом цепи рабочего тока и возникновению короткого замыкания, дефекты конструкций и технологии изготовления оборудования (заводские дефекты), естественное старение и форсированные износы изоляции. Например, систематическое превышение температуры обмоток трансформатора сверх допустимой на 6 о С сокращает срок возможного использования его изоляции вдвое.

Причинами нарушений в работе электроустановок могут быть грозовые и коммутационные перенапряжении, при этом повреждается изоляция трансформаторов, выключателей, разъеденителей и другого оборудования. Чрезмерное загрязнение и увлажнение изоляции способствуют ее перекрытию и пробою.

Читать еще:  Как задекорировать пень на дачном участке

Однофазные замыкания на землю в сетях 6 – 35 кВ, сопровождающиеся горением заземляющих дуг (вследствие недостаточной компенсации емкостных токов), приводят к перенапряжениям, пробоям изоляции электрическнх машин и аппаратов, а непосредственное воздействие заземляющих дуг к разрушению изоляторов, расплавлению шин, выгоранию цепей вторичной коммутации в ячейках КРУ и др.

Причины отказов и работе устройств релейной зашиты, автоматики и аппаратуры вторичной коммутации следующие: неисправности электрических и механических частей реле, нарушения контактных соединений, обрывы жил контрольных кабелей, цепей управления и т.д., неправильный выбор или несвоевременное изменение уставок и характеристик реле, ошибки монтажа и дефекты в схемах релейной защиты и автоматики, неправильные действия персонала при обслуживании устройств релейной защиты и автоматики.

Каждая причина может привести к отказу в отключении или неселективному отключению оборудования во время короткого замыкания и иметь тяжелые последствия вплоть до развития местных аварий в системные.

Причинами ошибочных действий персонала при выполнении переключений в большинстве случаев являются нарушения оперативной дисциплины, пренебрежительное отношение к требованиям правил технической эксплуатации, недостаточное знание инструкций, невнимательность, отсутствие контроля за собственными действиями и др.

Выше названы лишь основные, наиболее часто повторяющиеся причины аварий и не указаны многие другие, имеющие место при эксплуатации электрооборудования подстанций и электрических сетей. И хотя причины аварий кажутся порой случайными, вероятность повторения их все же достаточно велика. Поэтому все случаи аварки самым тщательным обратом расследуются, изучаются, и принимаются меры к тому, чтобы исключить их повторение.

Аварии на подстанциях события сравнительно редкие, но чрезвычайно значительные по своим последствиям. Они устраняются по основном действием специальных автоматических устройств, в иных же случаях ликвидируются действиями оперативного персонала.

Ликвидация аварий оперативным персоналом заключается: в выполнении переключений, необходимых для отделения поврежденного оборудования и предупреждения развития аварии, в устранении опасности для персонала, в локализации и ликвидации очагов возгораний в случае их возникновения, в восстановлении в кратчайший срок электроснабжения потребителей, в выяснении состояния отключившегося oт сети оборудования и принятии мер по включению его в работу или выводу в ремонт.

Для оперативного персонала ликвидация аварий является трудной задачей, решение которой связано с мобилизацией в короткий период времени всех его знаний, навыков и опыта. Трудность решения усугубляется сознанием личной ответственности за правильность принимаемых решений в неожиданно возникшей и подчас сложной аварийной ситуации, когда персонал, испытывая эмоциональное напряжение, должен действовать безошибочно, четко и быстро. В этих условиях выдержка персонала, самообладание, сосредоточенность и концентрация внимания на главном являются залогом успешной ликвидации аварии.

Неисправности электрооборудования, методы их поиска и устранения

Наиболее сложным при ремонте электрооборудования является процесс поиска неисправностей, так как современные электрические схемы представляют собой сложную взаимосвязанную сеть электрических и электронных цепей. Поэтому достаточно трудно обнаружить неисправную деталь или цепь среди множества других деталей и цепей, влияющих одна на другую. Задача осложняется еще тем, что большинство неисправностей носят скрытый характер и не могут быть обнаружены внешним осмотром. Процесс поиска неисправности представляет собой последовательность тестовых экспериментов над электроприводом и принятия диагностического промежуточного или конечного решения.

Одним из путей уменьшения времени поиска неисправностей и требований к квалификации обслуживающего персонала является применение автоматического поиска неисправностей, основанного на алгоритмизации процедур поиска, Для поиска неисправностей в системе электрооборудования. как показывает опыт эксплуатации, возможно применение следующих методов.

Внешний осмотр. Наибольший эффект дает внешний осмотр включенного электрооборудования при отсутствии аварийных признаков отказа и соблюдения правил безопасности труда. Признаками неисправности в этом случае (кроме тех, которые можно обнаружить при включенном электрооборудовании) являются: появление искрений, дыма, нагрев отдельных деталей, появление треска и т.п. Однако внешний осмотр не позволяет обнаружить скрытые неисправности.

Метод замены. Если после замены исчезают неисправности, то был заменен действительно поврежденный элемент.

Метод вносимой неисправности. В этом случае в проверяемый блок вносятся искусственные повреждения, вызывающие определенные логические взаимодействия элементов. Контроль за параметрами схемы и анализ их изменений позволяют определить или локализовать неисправность.

Метод половинного разбиения. Этот метод успешно может быть применен в том случае, если показатели надежности отдельных узлов и блоков схем электрооборудования одинаковы. Для поиска неисправности можно проверить один узел, например, по напряжению, а затем по току. Деление может быть выполнено и внутри блока или узла, что позволяет оперативно локализовать, а затем и обнаружить неисправность.

Метод контрольного сигнала. Использование подобного метода обусловлено широким распространением логических элементов и микросхем в системах регулирования и управления. Для обнаружения неисправности с помощью контрольного сигнала целесообразно представить контрольную цепь диаграммой прохождения сигнала через исправную систему. Контрольному сигналу заданной формы будет соответствовать определенная реакция, анализируя которую, можно выявить работоспособность проверяемого узла или электрической цепи.

Метод промежуточных измерений. Метод предусматривает осциллографирование характерных процессов, измерение напряжений на контрольных точках, контроль сопротивления отдельных элементов и электрических цепей и другие контрольно-диагностические действия, позволяющие определить место неисправности в электрооборудовании или обнаружить неисправный элемент.

Метод сравнения с неисправным объектом. Метод сравнения заключается в том, что сигналы неисправности узла или блока схемы сравнивают с сигналами другого исправного или неисправного узла или блока.

Располагая перечисленными методами поиска дефектов, следует учесть, что оптимальная методика должна представлять собой логическую последовательность действий, сужающих границы области «неисправности до полной локализации ее. При этом для выбора метода поиска неисправности и в процессе поиска необходимо пользоваться следующими практическими принципами:

прежде всего необходимо убедиться, что в системе электрооборудования нет ошибочно установленных позиций, положений рукояток переключателей и задающих устройств;

следует выбирать такой метод и такую последовательность поиска неисправности, чтобы исключалась случайность полученных результатов, поиск должен приводить хотя бы к одному из многих возможных результатов; в начале поиска неисправности нужно выбрать такую проверку, которая позволяет получить наибольшую информацию, устраняющую максимум неопределенностей;

если имеется отказ, следует вначале предположить природу отказа исходя из внешних признаков его, а затем предусмотреть методику по предполагаемой причине отказа;

метод поиска отказа необходимо выбирать с учетом наименьших затрат времени, если неизвестна действительная причина отказа.

Неисправности электрооборудования можно классифицировать по трем признакам. К первой группе следует отнести неисправности, обусловленные проектными недостатками.

Вторая, наиболее многочисленная группа неисправностей проявляется в начале периода эксплуатации электрооборудования и связана обычно с несовершенством конструкции эксплуатируемого оборудования, некачественными монтажом и наладкой. К характерным неисправностям этой группы относятся: многочисленные ложные срабатывания блокировок из-за некачественной наладки; завышение уставки максимальной токовой защиты, так как ток срабатывания (уставка) реле рассчитан не по действительному (рабочему), а по номинальному току двигателей.

В этот период весьма многочисленные случаи выхода из строя силовых и контрольных кабелей вследствие некачественного монтажа соединительных муфт и концевых заделок.

Эти неисправности обусловливают большой объем ремонтных работ, удорожают первоначальный период эксплуатации. Однако поиск неисправности облегчается, так как известны причины неисправности, полученные на основании опыта эксплуатации подобного оборудования на других объектах.

Третья группа неисправностей появляется в процессе эксплуатации и связана с неблагоприятными внешними условиями, процессами старения изоляционных материалов и некачественной эксплуатацией. Наиболее частые неисправности этой группы — обрыв электрической цепи в контактных реле, пускателей, контакторов. Следует отметить три основные причины этих неисправностей: попадание посторонних предметов между контактами; разрегулирование механической части электрического аппарата, тяг, пружин; окисление и эрозия контактов из-за воздействия электрической дуги.

При отыскании неисправности можно воспользоваться любым методом поиска. Применяемый на практике метод поиска разрыва в электрической цепи основан на включении этой цепи под напряжение и проверке контрольных точек этой цепи с помощью индикатора или контрольной лампочки.

При наличии разрыва между контрольными точками возникает разность потенциалов, что визуально проявится в загорании контрольной лампы.

Большую помощь в отыскании и устранении неисправности оказывавает производственная сигнализация. Если неисправность произошла вне сферы действия производственной сигнализации, необходимо воспользоваться схемами электрооборудования.

Читать еще:  Что делать, если пропало электричество в половине квартиры?

Высокая квалификация обслуживающего персонала, знание им электрических схем и принципа их работы, а также методов поиска и устранения неисправностей являются основными условиями успешной эксплуатации электрооборудования береговых установок.

Характерные неисправности электрооборудования и способы их устранения

Характерные неисправности электрооборудования и способы их устранения

Внешними признаками неисправности электропроводки является перегорание предохранителей или автоматических защитных устройств и появление специфичного запаха горелой изоляции, иногда искрение или перегрев проводки.

Повреждения электропроводки и ее элементов могут происходить из-за небрежного или неосторожного с ней обращения, в результате некачественного выполнения монтажных работ, при физическом износе проводов и кабелей.

При техническом обслуживании внутренних электропроводок проверяют состояние проводов и кабелей и их изоляции, натяжение и закрепление проводов на роликах и изоляторах. Обвисшие и незакрепленные провода и кабели подтягивают и надежно закрепляют. При обнаружении поврежденных роликов, изоляторов, изоляционных трубок, фарфоровых воронок и втулок их немедленно заменяют другими. Поврежденные участки проводки заменяют новыми. Если повреждена изоляция проводов, допускается поврежденный участок проводки изолировать липкой изоляционной лентой или трубкой из изолирующего материала.

При ремонте помещения не допускается замазывание проводки известью, побелкой или закрашивание краской, так как попадание на провода воды и растворителей краски ухудшают их изоляцию, что может привести к короткому замыканию. Вода проникает в трещины, впитывается в гигроскопические материалы, смешивается с грязью, растворяет кислоты и щелочи, образуя электролиты. Последние разрушают не только изоляционные материалы, но и металлы.

Не допускается завешивать провода коврами, портьерами, гардинами и другими легковоспламеняющимися материалами. Нельзя подвешивать провода на гвозди, оттягивать их проволокой или веревкой.

Электропроводку и ее элементы периодически осматривают и проверяют. Количество периодических осмотров электропроводки зависит от ее конструктивного исполнения и характеристики помещения. Выявленные при осмотре неисправности, дефекты, повреждения устраняют немедленно.

К электроустановочным устройствам относятся: штепсельные розетки, выключатели, вилки, патроны, предохранители и т. п.

Неисправности электроустановочных устройств.

Характерной неисправностью выключателей является механическое заедание рычажка или клавиши. При осмотре выключателя могут быть обнаружены отломанные контактные пружины, подгоревшие контактные пластины, обломанные пластмассовые детали, трещины в основаниях и крышках. Как правило, такие выключатели ремонту не подлежат и заменяются новыми.

В штепсельных розетках со временем ослабевают пружины, сжимающие контактные гнезда, в результате чего штепсельное соединение нагревается, контакты покрываются нагаром и оплавляются. Для надежной работы штепсельного соединения необходимо сжать или заменить пружины и обеспечить контакт, при котором штифты штепсельных вилок плотно держатся в гнездах розетки. При отсутствии запасных сжимных пружин, наличии трещин и сколов в основании и крышке штепсельные розетки подлежат замене.

При выдергивании штепсельной вилки из скрытой розетки она может выпасть вместе с проводами из коробки. Вставлять ее обратно можно, только предварительно обесточив электросеть. При закреплении штепсельной розетки в коробке необходимо следить за тем, чтобы провода не попали под распорные лапки. Винты крепления лапок завинчивают поочередно и равномерно.

Использование тройников. Иногда в одну розетку через тройник-разветвитель подключают одновременно несколько мощных электроприборов. Этого делать не рекомендуется, так как большая нагрузка на подводящие к розетке провода приводит к перегреву последних и быстрому высыханию изоляции.

Светильники с лампами накаливания

Наиболее распространенной неисправностью осветительной сети является перегорание электрической лампочки. Для проверки лампы накаливания необходимо воспользоваться заведомо исправной лампой. Если такая замена не дает положительного результата, причину следует искать в патроне. Необходимо проверить, имеется ли касание цоколя с центральным контактом. При необходимости его нужно немного отогнуть. При плохом контакте «цоколь-патрон» возможны приваривание цоколя лампы к патрону, перегрев лампы патрона, светильника и подводящих проводов. При наличии механических поломок контактных стоек, обгорании пластмассовых корпусов, наличии трещин и сколов патрон необходимо заменить на заведомо исправный.

Лампы накаливания часто не выворачиваются из патрона из-за того, что заржавел цоколь или приварился центральный контакт. Применение большого усилия приводит, как правило, к отрыву цоколя. В этом случае необходимо обесточить электросеть, вывернув предохранительные пробки или отключив автоматические выключатели. Затем, осторожно вращая колбу лампы, отрывают проволочки, на которых она висит. Плоскогубцами выворачивают оставшийся в патроне цоколь лампы. В тех случаях, когда не удается вывинтить цоколь, разбирают патрон.

При перезарядке патрона необходимо тщательно проводить оконцовку проводов. После зачистки от изоляции многожильный провод скручивают, чтобы не было торчащих в стороны проволочек. Затем круглогубцами формуют колечко, желательно колечко облудить. Место зачистки изоляции и провод до колечка обматывают изоляционной лентой. Правильная перезарядка необходима и при присоединении проводов и шнуров к бытовым электроприборам. В случае неаккуратной оконцовки проводов возможно короткое замыкание между торчащими жилами или достаточно одному проводку из колечка коснуться наружных частей арматуры, чтобы при прикосновении к ним человек попал под напряжение.

Светильники с люминесцентными лампами

Люминесцентные светильники представляют собой сложное устройство со многими конструктивными элементами и большим количеством контактов. Поэтому неполадки при эксплуатации ламп бывают очень разнообразными. Возможные неполадки в работе люминесцентных ламп и способы их устранения приведены в табл. 38.

Люминесцентные лампы вынимают из патронов с большой осторожностью, чтобы не повредить цоколь и не разбить стекло лампы, так как в лампе находятся пары ртути, которые являются очень токсичными.

Таблица 39. Возможные неисправности в светильниках с люминесцентными лампами, причины и способы их устранения

При эксплуатации люминесцентных ламп необходимо знать, что характер газового разряда в значительной степени определяется величиной давления газа или паров, в которых происходит разряд. При понижении температуры давление паров в лампе падает и процесс зажигания и горения лампы ухудшается, а при температуре ниже 5 °C лампа вообще не зажигается.

Оптимальной температурой эксплуатации люминесцентных ламп является температура 20–25 С.

Техническое обслуживание светильников, как правило, проводят одновременно с техническим обслуживанием электропроводок.

В состав работ по техническому обслуживанию светильников входят следующие операции:

• проверка крепления, состояния крюков и кронштейнов;

• проверка соответствия мощности установленных ламп;

• проверка состояния изоляции проводов в местах ввода их в светильники и в местах оконцевания их;

• удаление пыли и грязи с арматуры светильников;

• снятие стекол и электроламп и их промывка;

• замена стекол, имеющих трещины и сколы;

• снятие корпуса патрона, зачистка контактов, подтягивание ослабевших зажимов;

• осмотр состояния осветительной арматуры и замена неисправных деталей;

• окраска металлических частей арматуры.

Все виды работ проводят при отключенном напряжении.

Соединительные шнуры и штепсельные вилки

Неисправности шнура. Наиболее часто во время эксплуатации изнашивается и повреждается присоединительный шнур электроприемника. Основными неисправностями соединительных шнуров являются излом или обрыв жил проводников, а также нарушение изоляции, в результате чего возможно короткое замыкание. Поэтому перед каждым включением проверяют состояние изоляции и оплетки шнура, особенно в местах входа его в вилку, штепсельный разъем или в прибор. Шнур или гибкий провод не должен перекручиваться, на нем не должны образовываться узлы, закрутки и т. д. В таких местах изоляция шнура быстро изнашивается, и оголяются токоведущие жилы. Оголенные места шнура тщательно изолируются. Если оголенных мест много, то шнур полностью заменяют.

Обрыв токоведущих жил по длине устраняют путем перезарядки шнура. Для этого шнур в месте обрыва или излома жилы разрезают разбежкой 10–20 мм, жилы зачищают и соединяют. Каждую жилу изолируют в отдельности, а затем накладывают общую изоляцию. При повреждении шнура в месте ввода в электроприбор конец шнура с контактными кольцами укорачивают на 60–80 мм, зачищают концы шнура от изоляции на длину 20–25 мм и делают контактные кольца, которые затем желательно облудить. Концы шнура с контактными кольцами покрывают на длине 10 мм изоляционной лентой так, чтобы из изоляции выступало кольцо, после чего шнур подсоединяют к прибору.

Читать еще:  Как удалить затирку из швов своими руками

Характерными неисправностями штепсельной вилки являются:

• обрыв (излом) шнура при входе в корпус вилки;

• ненадежный контакт оконцованного провода с контактным штырем;

• окисление и коррозия контактного штыря.

При осмотрах квартирных щитков необходимо обращать внимание на состояние контактов в местах присоединения проводов. Ненадежное соединение приводит к нагреву и обгоранию контакта, разрушению изоляции и образованию искрения. Такие контакты очищают от копоти и туго затягивают.

Автоматические выключатели, ПАРы и плавкие вставки предохранителей должны соответствовать нагрузкам и сечениям проводов и кабелей. Не подлежат ремонту и заменяются новыми аппараты защиты с поврежденными корпусами.

Квартирные щитки со шкафами должны иметь исправные замки, надежное уплотнение дверей. Не разрешается хранить в этих шкафах посторонние предметы.

Электросчетчики не должны иметь повреждение корпуса, смотровых стекол, клеммных крышек и др. На счетчике устанавливают две пломбы: одну – на винтах, крепящих кожух счетчика, другую – на клеммной крышке при установке или замене счетчика.

Исправность счетчика можно определить по вращению его диска. При отключении диск счетчика должен останавливаться, совершив не более одного оборота. Если же диск после отключения всех токоприемников продолжает вращаться, то счетчик следует снять и перепроверить в соответствующих организациях. Если же счетчик окажется исправным, но при отключенной нагрузке диск продолжает вращаться, то это значит, что изоляция электропроводника повреждена и имеет место значительная утечка тока. В этом случае необходимо прекратить пользование электроэнергией, установить место повреждение проводки и исключить утечку электроэнергии.

Эксплуатация электропроводки с повышенными токами утечки опасна с пожарной точки зрения (возможно возгорание строения), и с точки зрения электробезопасности, так как под напряжением могут оказаться сырые стены здания.

Определить правильность показания счетчика можно и в домашних условиях. Для этого отключают все светильники, нагревательные приборы и другие потребители. На 10–15 минут включают один потребитель с заведомо известной мощностью, например электролампу, и определяют фактический расход электроэнергии, который должен совпадать с показаниями счетчика с учетом погрешности последнего.

Внешними признаками перегрузки счетчика являются специфический запах подгоревшей изоляции, ненормальное гудение счетчика, пожелтение стекла смотрового окошка.

Жужжание счетчика, если оно не сопровождается самоходом, не является признаком его неисправности.

Срабатывание средств защиты происходит из-за коротких замыканий в электропроводке и токоприемниках или от перегрузки.

Чтобы быстро и точно определить место замыкания, пользуются методом последовательного включения нагрузок. Для этого отключают все электроприемники. Заменяют сгоревшую пробку, включают ПАР или автоматический выключатель. Если защита опять срабатывает сразу, то наиболее вероятным местом короткого замыкания является электропроводка или штепсельная розетка. Если срабатывание защиты сразу не произойдет, то поочередно включают осветительные приборы, затем другие токоприемники до возникновения короткого замыкания. В светильниках повреждение чаще всего бывает в патронах. В том случае, когда защита срабатывает через некоторое время после включения нагрузки, необходимо отключить часть электроприемников (уменьшить нагрузку), так как в этом случае нагрузка сети превышает ток срабатывания защиты.

Нельзя ставить вместо заводской пробки проволочные перемычки (жучки), так как они не сгорают даже при больших токах, в результате чего может загореться изоляция и произойти пожар.

Перед включением в сеть любого бытового электроприбора убеждаются, что напряжение, на которое рассчитан прибор, соответствует напряжению электросети. Нельзя включать в сеть приборы, не соответствующие напряжению сети. Перед включением в сеть нового прибора следует обратить внимание на потребляемый ими ток или мощность и подсчитать, выдержат ли предохранители и электропроводка включение этих приборов.

Профилактические испытания электропроводок

При испытаниях проверяют целостность жил и правильность фазировки – подключение фазы на выключатель и на центральный контакт патрона.

Не реже одного раза в три года проверяют изоляцию электропроводки мегомметром напряжением 500 или 1000 В. Сопротивление изоляции измеряют между каждым проводом и землей. Наименьшее сопротивление изоляции – 0,5 МОм. Если сопротивление меньше 0,5 МОм, то необходимо определить причину и исправить поврежденную часть электропроводки.

Данный текст является ознакомительным фрагментом.

Дефекты и нарушения в электроустановках и на объектах

В данной статье будут описаны основные дефекты и нарушения в электроустановках и на объектах, а также ссылки на нормативные документы, пояснения чем тот или иной дефект опасен или к чему может привести. В основном все нарушения связанны с отклонениями от проектной документации, а также как следствие низкой квалификации тех, кто делал электромонтажные работы или обслуживание электроустановки.

  1. Заземляющие проводники подключены последовательно (шлейфом) – ПТЭЭП 2.7.6, опасно это нарушение тем, что при пропадании контактного соединения например на одном из механизмов розеток, все следующие окажутся не заземлены, а соответственно есть риск возникновения опасного потенциала на включаемых в сеть электроприборов с металлическим корпусом, также и с другим электрооборудованием, которое необходимо заземлять.
  2. Сечение кабелей и проводов не соответствует номиналу автоматического выключателя или плавких вставок – ПУЭ-7 п.1.3.10-1.3.11, опасно это тем, что для разных типов кабелей и сечения их жил существует соответствующая максимально допустимая нагрузка, в случае их перегруза, провода и кабели начинают сильно греться, плавиться, гореть, а дальше соответственно пожар. Автоматический выключатель или плавкая вставка должна быть никак не выше по номиналу. Например для кабеля 3х2,5 максимально длительно допустимый – 25 ампер, то лучшим вариантом его защиты будет применение автоматического выключателя 20 или 16 ампер, но никак не 32 или 40 ампер.
  3. Цветовая схема проводников не соответствует нормам – ПУЭ 2.1.31, опасно это путаницей, с последующими ошибками вызванными из-за того, что один следует знанием нормативных документов, а другой как ему удобно, при этом человек смело может предположить, что проводник с изоляцией синего цвета используется для ноля, а в итоге он окажется под напряжением.
  4. Неисправны механизмы розеток, выключателей, светильников и других электроустановочных изделий – ПРАВИЛА ПРОТИВОПОЖАРНОГО РЕЖИМА В РОССИЙСКОЙ ФЕДЕРАЦИИ от 25 апреля 2012 г. п.№ 42 – это опасно прежде всего пожаром в случае неисправности электроустановочных изделий, в случае отсутствия крышки у светильников или их неисправности, есть риск выпадания люминесцентных ламп.
  5. Нулевой проводник идет через автоматический выключатель, ПУЭ – 6.1.36 – это опасно случайным отключением нулевого проводника, что вызывает в системе 380В вызовет возникновение на потребителях питающихся по 220В – две фазы, соответственно 380В, что вызовет выход из строя электрооборудования. Единственный возможный вариант установки автоматического выключателя на нулевой проводник – это автомат на 2 полюса (для 220В) или 4 полюса(для 380В), чтобы с нулевым проводником также отключались и фазные.
  6. Несоответствие проектной документации – достаточно серьезное нарушение, особенно если выбраны типы и сечение кабелей отличных от проекта, а также автоматические выключатели завышенного номинала, все это может вызвать достаточно печальные последствия.
  7. Отсутствие знаков электробезопасности на электрощитах – отсутствие этих знаков может ввести в заблуждение, особенно опасно это для персонала не имеющего отношения к электротехническому.
  8. Не опрессованные наконечниками гибкие провода – это нарушение приводит к ухудшению контактного соединения, что в последствии может вызвать перегрев и возгорание. Согласно ПУЭ 2.1.21 опрессовка наконечниками является обязательной.

Своевременное устранение дефектов и нарушений в электроустановках позволит избежать пожара, а также поражения людей и животных электрическим током. Выявить все проблемы на объектах поможет наша электроизмерительная лаборатория.

Также в нашей компании можно заказать устранение дефектов, для этого заполните контактную форму ниже, или же свяжитесь с нами по телефону +7(499)394-00-95 специалисты нашей компании ответят на все Ваши вопросы

Смотрите также другие статьи :

Мы сделали небольшой тест для самостоятельной проверке знаний нормативных документов по электрике. При выборе ответа сразу выводится тот или иной пункт нормативных документов, на основе которого был создан вопрос.

Испытания электрооборудования сети и проведение электроизмерительных работ выполняются с целью проверки параметров сети на соответствие проектным величинам и требованиям установленных норм.

Ссылка на основную публикацию
Adblock
detector