Как повысить постоянное и переменное напряжение
Iddc.ru

Все об электрике

Как повысить постоянное и переменное напряжение

ЗАКАЗ

Купить стабилизатор напряжения в нашем интернет-магазине очень просто. Найдите подходящий по параметрам стабилизатор напряжения в каталоге. Если вы уверены в своем выборе, нажмите на иконку или позвоните по телефону 8 (909) 697-55-99 если у вас остались вопросы.

On-Line заказ работает 24/7 Контакты

Как увеличить напряжение переменного тока

Как увеличить напряжение переменного тока без трансформатора

Управление электропитанием в доме или офисе – это способ улучшить работу электроприборов и сделать напряжение более стабильным. Обычно это делается с помощью силового трансформатора, но существуют другие варианты, если по какой-то причине этот метод не подходит.

Разъёмы напряжения переменного тока

Напряжение – это измерение электричества, которое включает в себя сравнение разности электрической потенциальной энергии между двумя точками в цепи. Напряжение измеряется в вольтах, обозначенных буквой V, и может быть измерено с помощью вольтметра.

Источниками питания являются два разных типа тока. Переменный ток (AC) – это ток, который постоянно меняет направление, этот тип подается от сети. Другим типом является постоянный ток (DC), который течет только в одном направлении, а находится он в батареях и ячейках. Батарея имеет гораздо меньшее напряжение, чем питание от сети. Стандартное сетевое напряжение в России составляет 220 В, что выше, чем в большинстве других стран, где стандартное напряжение часто составляет около 120 В.

Способы увеличения напряжения переменного тока

Существуют различные ситуации, когда человек может захотеть увеличить напряжение переменного тока в комнате или здании. Например, в некоторых районах уровень напряжения изменяется, уменьшаясь в то время, когда многие люди используют электроприборы, поскольку электропитание распределяется для множества потребителей. Это может повлиять на работу таких приборов, как потолочный вентилятор или даже холодильник, который может прекратить свою работу в это время.

1. Использование трансформатора

Стандартный способ увеличения напряжения переменного тока – это использование силового трансформатора. Популярным инструментом для этой задачи является автотрансформатор. Он не изменяет напряжение автоматически, как может показаться исходя из его названия, но вместо этого позволяет пользователю вручную регулировать напряжение в соответствии с требованиями.

Этот метод может быть опасен, если приборы, подключенные к источнику питания, потребляют более высокое напряжение, чем-то для работы которого предназначен трансформатор, это называется перенапряжением. Трансформатор также является дорогостоящей покупкой, что является еще одной причиной, по которой люди часто ищут альтернативный вариант.

2. Источник бесперебойного питания

Один из способов поддерживать постоянство уровня напряжения – использовать электрическое устройство, называемое источником бесперебойного питания. ИБП работает как батарея, которая заряжается энергией от сети во время подачи высокого напряжения, а затем отдает эту энергию обратно во время подачи низкого напряжения. Это то же самое, что и форма резервного копирования при отключении питания, которая часто используется компаниями, использующими компьютеры или другое электрооборудование, которое не может потерять свой источник питания.

3. Удвоитель напряжения

Другим устройством, которое может использоваться для управления уровнем напряжения переменного тока, является множитель напряжения, такой как удвоитель напряжения. Это электрическая цепь, которая использует конденсаторы и диоды для преобразования мощности переменного тока при более низком напряжении в более высокое постоянное напряжение. По своему принципу работы эти устройства схожи с компенсационными стабилизаторами напряжения. Однако удвоители напряжения очень сложно в области технического обслуживания, поэтому рекомендуются только тем, кто хорошо разбирается в электронике.

Как купить устройство для выравнивания напряжения

Есть много продавцов, специализирующихся на электрооборудовании, таких как силовые трансформаторы и источники бесперебойного питания в специализированных магазинах, однако в интернет-магазине выбор товаров всегда больше. Покупать товары в интернете — это прекрасная идея, ведь приобрести любое устройство можно по разумной цене, не переплачивая магазинам наценку за аренду и другие услуги. Просто используйте панель поиска, в любом удобном ля вас браузере, а затем проведите фильтрацию полученных результатов. Большинство продавцов предоставляют подробную информацию о своей продукции, но они будут рады ответить на интересующие вас вопросы, чтобы помочь клиентам убедиться, что они делают правильную покупку.

Поскольку электрооборудование может быть опасным, особенно важно покупать у надежного продавца, поэтому сначала взгляните на их рейтинги и отзывы клиентов. Если вам нужно действительно качественное устройство для обеспечения стабильной подачи электричество в доме или квартире, рекомендуем приобрести стабилизатор напряжения из нашего каталога или позвонить по тел: +7 (495) 724-31-17. Где вам подробно ответят на все интересующие вас вопросы касательно данной продукции и подберут наилучшую модель стабилизатора напряжения, источника бесперебойного питания и т.д.

Как повысить постоянное и переменное напряжение

Повышение переменного напряжения

Повысить переменное напряжение можно двумя способами – использовать трансформатор или автотрансформатор. Основная разница между ними состоит в том, что при использовании трансформатора есть гальваническая развязка между первичной и вторичной цепью, а при использовании автотрансформатора её нет.

Интересно! Гальваническая развязка – это отсутствие электрического контакта между первичной (входной) цепью и вторичной (выходной).

Рассмотрим часто возникающие вопросы. Если вы попали за границы нашей необъятной родины и электросети там отличаются от наших 220 В, например, 110В, то чтобы поднять напряжение со 110 до 220 Вольт нужно использовать трансформатор, например, такой как изображен на рисунке ниже:

Следует сказать о том, что такие трансформаторы можно использовать «в любую сторону». То есть, если в технической документации вашего трансформатора написано «напряжение первичной обмотки 220В, вторичной – 110В» – это не значит, что его нельзя подключить к 110В. Трансформаторы обратимы, и, если на вторичную обмотку подать, те же 110В – на первичной появится 220В или другое повышенное значение, пропорциональные коэффициенту трансформации.

Следующая проблема, с которой многие сталкиваются – низкое напряжение в электросети, особенно часто это наблюдается в частных домах и в гаражах. Проблема связана с плохим состоянием и перегрузкой линий электропередач. Чтобы решить эту проблему – вы можете использовать ЛАТР (лабораторный автотрансформатор). Большинство современных моделей могут как понижать, так и плавно повышать параметры сети.

Схема его изображена на лицевой панели, а на объяснениях принципа действия мы останавливаться не будем. ЛАТРы продаются разных мощностей, тот что на рисунке примерно на 250-500 ВА (вольт-амперы). На практике встречаются модели до нескольких киловатт. Такой способ подходит для подачи номинальных 220 Вольт на конкретный электроприбор.

Если вам нужно дёшево поднять напряжение во всем доме, ваш выбор — релейный стабилизатор. Они также продаются с учетом разных мощностей и модельный ряд подходит для большинства типовых случаев (3-15 кВт). Устройство основано также на автотрансформаторе. О том, как выбрать стабилизатор напряжения для дома, мы рассказали в статье, на которую сослались.

Цепи постоянного тока

Всем известно, что на постоянном токе трансформаторы не работают, тогда как в таких случаях повысить напряжение? В большинстве случаев постоянку повышают с помощью дросселя, полевого или биполярного транзистора и ШИМ-контроллера. Другими словами, это называется бестрансформаторный преобразователь напряжения. Если эти три основных элемента соединить как показано на рисунке ниже и на базу транзистора подавать ШИМ сигнал, то его выходное напряжение повысится в Ku раз.

Ku=1/(1-D)

Также рассмотрим типовые ситуации.

Допустим вы хотите сделать подсветку клавиатуры с помощью небольшого отрезка светодиодной ленты. Для этого вполне хватит мощности зарядного от смартфона (5-15 Вт), но проблема в том, что его выходное напряжение составляет 5 Вольт, а распространенные типы светодиодных лент работают от 12 В.

Тогда как повысить напряжение на зарядном устройстве? Проще всего повысить с помощью такого устройства как «dc-dc boost converter» или «импульсный повышающий преобразователь постоянного напряжения».

Такие устройства позволяют повысить напряжение с 5 до 12 Вольт, и продаются как с фиксированной величиной, так и регулируемые, что позволит в большинстве случаев поднять с 12 до 24 и даже до 36 Вольт. Но учтите, что выходной ток ограничен самым слабым элементом цепи, в обсуждаемой ситуации – током на зарядном устройстве.

При использовании указанной платы выходной ток будет меньше входного во столько раз, во сколько поднялось напряжение на выходе, без учета КПД преобразователя (он в районе 80-95%).

Подобные устройства строят на базе микросхем MT3608, LM2577, XL6009. С их помощью можно сделать устройство для проверки реле регулятора не на генераторе автомобиля, а на рабочем столе, регулируя значения с 12 до 14 Вольт. Ниже вы видите видео-тест такого устройства.

Читать еще:  Как сделать вазоны для цветов своими руками?

Интересно! Любители самоделок часто задают вопрос «как повысить напряжение с 3,7 В до 5 В, чтобы сделать Power bank на литиевых аккумуляторах своими руками?». Ответ прост – использовать плату-преобразователь FP6291.

На подобных платах с помощью шелкографии указано назначение контактных площадок для подключения, поэтому схема вам не понадобится.

Также часто возникающая ситуация — необходимость подключить к автомобильному аккумулятору 220В прибор, а бывает что за городом очень нужно получить 220В. Если бензинового генератора у вас нет – используйте автомобильный аккумулятор и инвертор, чтобы повысить напряжение с 12 до 220 Вольт. Модель мощностью в 1 кВт можно купить за 35 долларов – это недорогой и проверенный способ подключить 220В дрель, болгарку, котёл или холодильник к 12В аккумулятору.

Если вы водитель грузовика, вам не подойдёт именно указанный выше инвертор, из-за того, что в вашей бортовой сети скорее всего 24 Вольта. Если вам нужно поднять напряжение с 24В до 220В – то обратите на это внимание при покупке инвертора.

Хотя стоит отметить, что есть универсальные преобразователи, которые могут работать и от 12, и от 24 вольт.

В случаях, когда нужно получить высокое напряжение, например, поднять с 220 до 1000В, можно использовать специальный умножитель. Его типовая схема изображена ниже. Он состоит из диодов и конденсаторов. Вы получите на выходе постоянный ток, учтите это. Это удвоитель Латура-Делона-Гренашера:

А так выглядит схема несимметричного умножителя (Кокрофта-Уолтона).

С его помощью вы можете повысить напряжение в нужное число раз. Это устройство строится каскадами, от числа которых зависит сколько вольт на выходе вы получите. В следующем видео описан принцип работы умножителя.

Кроме этих схем существует еще множество других, ниже изображены схемы учетвертителя, 6- и 8-кратных умножителей, которые используются для повышения напряжения:

В заключении хотелось бы напомнить о технике безопасности. При подключении трансформаторов, автотрансформаторов, а также работе с инверторами и умножителями будьте аккуратны. Не касайтесь токоведущихчастей голыми руками. Подключения следует выполнять при отключенном питании от устройства, а также избегать их работы во влажных помещениях с возможностью попадания воды или брызг. Также не превышайте заявленный производителем ток трансформатора, преобразователя или блока питания, если не хотите, чтобы он у вас сгорел. Надеемся, предоставленные советы помогут вам повысить напряжение до нужного значения! Если возникнут вопросы, задавайте их в комментариях под статьей!

Как повысить переменное и постоянное напряжение?

В быту и на производстве широко используются электрические и электронные приборы различного назначения. Необходимое условие их функционирования — подключение к электрической сети или иному источнику электрической энергии. Из соображений упрощения создания и последующей эксплуатации сети или источника целесообразно, чтобы выходное напряжение имело определенное значение. Например 220 В бытовой сети переменного тока и 12 В автомобильной сети постоянного тока.

На практике применяются сети как постоянного, так и переменного тока. Например, бытовая 220-вольтовая сеть функционирует на переменном токе, а бортовая автомобильная сеть использует постоянный ток. В зависимости от разновидности сети повышение напряжения до нужного значения решается в них по-разному.

При обращении к современной микроэлектронной элементной базе реализующие эти функции устройства при солидной выходной мощности обладают очень хорошими массогабаритными показателями. Для иллюстрации этого положения на рисунке 1 показан пример платы со снятым корпусом повышающего преобразователя постоянного тока.

Рис. 1. Повышающий преобразователь постоянного тока бестрансформаторного типа

В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и как это делать правильно.

Повышение переменного напряжения

Разновидности трансформаторов

Наиболее простой способ увеличения переменного напряжения – установка между выходом сети и питаемой нагрузкой повышающего трансформатора. Применяемые на практике устройства делятся на две основные разновидности. Первая — классические трансформаторы, вторая — автотрансформаторы. Схемы этих устройств приведены на рисунке 2.

Рис. 2. Схемы трансформатора и автотрансформатора

Классический трансформатор содержит две обмотки: первичную или входную с числом витков W1, а также вторичную или выходную с числом витков W2. Для трансформатора действует правило Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации. Таким образом, в повышающем трансформаторе количество витков вторичной обмотки превышает таковое у первичной.

Повышающий авторансформатор содержит единственную обмотку с W2 витками. Сеть подключается на часть W1 ее витков. Повышение U происходит за счет того, что магнитное поле, создаваемое при протекании тока через входную часть общей обмотки, наводит ток уже во всей обмотке W2. Расчетная формула автотрансформатора аналогична обычному: Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации.

Особенности трансформаторов

Эффективность функционирования трансформаторов наращивают применением сердечника из электротехнической стали. Этот компонент

  • увеличивает КПД устройства за счет уменьшения рассеяния магнитного поля в окружающем пространстве;
  • выполняет функцию несущей силовой основы для обмоток.

Неизбежные потери на вихревые тока уменьшают тем, что сердечник представляет собой наборный пакет из тонких профилированных изолированных пластин.

При прочих равных условиях целесообразно использовать трансформатор. Это связано с тем, что не пропускает постоянный ток, т.е. обеспечивает гальваническую развязку сети от приемника, позволяя добиться большей электробезопасности.

Особенность трансформатора — его обратимый характер, т.е. в зависимости от ситуации он может одинаково успешно выполнять функции повышающего и понижающего устройства. Единственное серьезное ограничение — необходимость соблюдения штатных режимов работы первичной и вторичной обмоток.

В отличие от компьютерных розеток, называемых RJ45, в различных странах при устройстве бытовых сетей электроснабжения устанавливают различные типа розеток. Известны, например, розетки, немецкого, французского, английского и иных стандартов или стилей. Поэтому на трансформатор малой мощности целесообразно возложить функции адаптера, который за счет разных типов вилок и гнезд обеспечивает механическое согласование сети и нагрузки. Пример такого устройства изображен на рисунке 3.

Рис. 3. Пример обратимого маломощного трансформатора с возможностью согласования типов розеток

Лабораторные автотрансформаторы ЛАТР

Сильная сторона автотрансформатора – простота регулирования выходного напряжения простым перемещением токосъемного контакта по обмотке. Устройства, допускающие выполнение этой опции, известны как лабораторные автотрансформаторы ЛАТР. Отличаются характерным внешним видом за счет наличия регулятора напряжения и вольтметра для его контроля, рисунок 4.

ЛАТР востребованы не только в лабораториях. Они массово применяются в гаражах, на садовых участках и других местах, где из-за перегрузки и износа линии напряжение в розетке оказывается ниже минимально допустимого.

При колебаниях сетевого напряжения вместо обычного ЛАТР целесообразно использовать стабилизатор, куда он входит в виде одного из блоков.

Рисунок 5. Обобщенная структурная схема повышающего преобразователя

Отдельные разновидности схем отличаются между собой:

  • формой сигнала, снимаемого с выхода генератора (синусоидальное или близкое к нему, пилообразное, импульсное и т.д.);
  • принципом увеличения генерируемого напряжения (трансформатор, умножитель);
  • типом выпрямления и сглаживания напряжения перед подачей его на выход устройства.

В продаже доступны микроэлектронная элементная база, которая позволяет собирать преобразователи данной разновидности при наличии даже начальных навыков радиомонтажника.

Умножители

Умножители применяют в тех случаях, когда из переменного входного напряжения нужно получить постоянное, которое в кратное количество раз превышает входное.

Существует большое количество схем умножителей. Одна из них показана на рисунке 6.

Рис. 6. Принципиальная схема умножителя

Коэффициент умножения можно нарастить увеличением количества каскадов.

Рис. 7. Еще пример: умножитель в 6 и 8 раз Рис. 8. Учетверитель напряжения

Общее для таких схем:

  • мостовой принцип реализации для увеличения общего КПД устройства;
  • использование конденсаторов для накапливания заряда;
  • применение диодов как элемента выпрямления.

Техника безопасности

При сборке и использовании повышающих устройств вне зависимости от их разновидности необходимо соблюдать базовые положения правил техники безопасности. Главные из них:

  • ни при каких условиях нельзя касаться незащищенными частями тела токоведущих элементов схем;
  • запрещается даже кратковременное превышение максимальной нагрузки;
  • устройства в обычном офисном исполнении нельзя эксплуатировать во влажных помещениях;
  • оборудование следует защищать от попадания брызг воды.
Читать еще:  Утепление чердака своими руками

Заключение

Приведем несколько областей использования устройств для увеличения напряжения.

Для переменного тока наиболее распространено использование повышающих трансформаторов для подключения различной европейской электронной и электротехнической техники к бытовой 110-вольтовой сети в США.

Примеры из области постоянного напряжения:

  • мощность широко распространенных USB-зарядников достаточна для питания СД-ленты, но последние требуют для работы напряжения 12 В; для такой выгодно ситуации применение повышающего преобразователя;
  • на 3,3-вольтовых литиевых аккумуляторах можно собрать power bank для мобильных телефонов;
  • регулируемые устройства хорошо востребованы при выполнении настроек автомобильных генераторов.

Автомобильный аккумулятор с подключенным к нему повышающим преобразователем может эффективно питать за городом такие 220-вольтовые устройства как телевизор, магнитофон, дрель.

Устройства для увеличения постоянного и переменного напряжения имеют обширную область применения, серьезно отличаясь друг от друга схемотехнически.

Выбор конкретной реализации зависит от ряда факторов, основные среди которых:

  • соотношение входного и выходного напряжения;
  • мощность питаемой нагрузки
  • уровень жесткости требований электробезопасности.

На практике можно воспользоваться как покупными, так и самодельными устройствами. Большинство самодельных схем доступны для воспроизведения при наличии даже среднего уровня подготовки в области электротехники и схемотехники.

Преобразователи напряжения постоянного тока

Говоря о преобразовании электрической энергии, можно вспомнить разнообразные трансформаторы, генераторы, блоки питания различных бытовых приборов, зарядные устройства электронных гаджетов, сварочные инверторы и даже атомные электростанции. Во всех случаях в том или ином виде происходит преобразование электрической энергии. Можно сказать, что нас в повседневной жизни окружают разные виды электрических преобразователей, и трудно себе представить их полное отсутствие в современном мире.

Преобразователи напряжения постоянного тока получили особенно широкое распространение в последние двадцать лет. Это связано со стремительным развитием полупроводниковой промышленности и электроники в целом.

Высокочастотные импульсные преобразователи почти вытеснили с рынка блоки питания с низкочастотными трансформаторами, которые можно встретить теперь разве что в старых телевизорах и других старинных приборах, или в некоторых современных усилителях звуковой частоты.

Высокочастотный трансформатор (или дроссель) имеет значительно меньшие габариты, чем низкочастотный трансформатор на железе, рассчитанный на работу от сети 50-60 Гц, именно поэтому импульсные блоки питания так компактны. Так или иначе, преобразователи напряжения постоянного тока все же содержат в своей конструкции трансформатор (или дроссель), но это уже совсем не тот тяжелый и шумный трансформатор.

Ассортимент современных DC-DC конвертеров (а именно так называются преобразователи постоянного напряжения в постоянное напряжение) достаточно широк. Давайте рассмотрим более подробно, какие именно бывают DC-DC конвертеры .

1. Миниатюрный регулируемый преобразователь

Этот крохотный понижающий преобразователь размером 43мм х 21мм, и другие подобные модели, стоят на китайских торговых площадках от одного доллара. Данный экземпляр работает на микросхеме LM2596 , и его выходные параметры могут регулироваться. На вход подается постоянное напряжение в диапазоне от 4,5 до 40 вольт, а на выходе получается постоянное напряжение от 1,3 до 35 вольт.

Максимальный ток, который можно получить от данного преобразователя составляет 3 ампера, однако в этом случае требуется радиатор, если же преобразователь используется без радиатора, средний ток не должен превышать 2 ампер. Эффективность такого преобразователя может достигать 92%.

Данный преобразователь собран по топологии step-down (buck) converter, и на плате видны все его главные составные части: входной и выходной конденсаторы, дроссель, диод Шоттки, регулировочный резистор и сама микросхема в корпусе TO-263-5. На приведенной выше принципиальной схеме не изображен регулировочный резистор, но на плате он есть.

Без этого резистора схема не даст на выходе больше 5 вольт, однако если обратную связь снимать не напрямую с выходного конденсатора фильтра, а через делитель напряжения, который как раз и собран здесь с использованием этого регулировочного резистора, можно существенно расширить диапазон выходных напряжений, что и реализовано на данной плате.

Сфера применения этих преобразователей ограничена лишь фантазией разработчика. Здесь и питание светодиодов, и зарядка различных портативных устройств, и многое другое.

Бывают и повышающие преобразователи такого типа, выполненные по топологии step-up (boost) converter.

На приведенном изображении (красная плата) регулируемый повышающий преобразователь максимальной мощностью до 150 ватт (требуется дополнительное охлаждение), на вход которого можно подавать от 10 до 30 вольт, а на выходе получать от 12 до 35 вольт.

Как и в предыдущем примере, этот преобразователь имеет на выходе регулировочный резистор, который и отвечает за получение на выходе нужного значения напряжения. Управляющая микросхема расположена на обратной стороне платы. Сама плата имеет размер 65мм х 35мм. Стоимость такого преобразователя раза в 3 выше предыдущего примера.

2. Водонепроницаемый блок питания

Этот блок питания имеет прочный литой водонепроницаемый корпус, залитый эпоксидным компаундом, что позволяет применять его как на транспорте, так и с любым другим оборудованием, где требуется надежность и безопасность. Преобразователь имеет защиту от пониженного напряжения, от перенапряжения, от короткого замыкания, и от перегрузок.

Диапазон входного напряжения в разных моделях весьма широк, и в данном примере от 9 до 24 вольт, при этом на выходе получаем 24 вольта с максимальным током 5 ампер (в данном примере). Размер корпуса на фото 75мм х 75 мм, высота 31мм. Стоимость таких преобразователей порядка 10 – 50 долларов, в зависимости от мощности.

Преобразователи такого типа производятся на мощность от 15 до 360 ватт, на входное напряжение до 60 вольт, и на выходное напряжение от 5 до 48 вольт. Они также весьма распространены на многочисленных торговых площадках.

3. Импульсный блок питания постоянного напряжения в кожухе

Обычно эти блоки питания изготавливают по схеме обратноходового, двухтактного или полумостового импульсного преобразователя. Они бывают на входное напряжение от 19 до 72 вольт и выше, а выход обычно от 5 до 24 вольт. Мощность преобразователей такого типа может достигать 1000 ватт. Размеры корпуса от 78мм х 51мм х 28мм до 295мм х 127мм х 41мм.

Такие блоки питания выпускаются многими фирмами-производителями, а их стоимость может доходить до нескольких сотен долларов. Довольно часто подобные блоки применяются для питания светодиодных лент. Они обладают возможностью точной подстройки выходного напряжения и имеют защиту от перегрузки.

Есть на рынке аналогичные модели преобразователей с питанием напрямую от сети переменного тока, называемые AC-DC преобразователями , однако там все равно напряжение сети сначала выпрямляется, фильтруется, то есть делается постоянным, а только после преобразуется посредством стандартного высокочастотного преобразования и выпрямления в постоянное напряжение другого уровня, более низкого, то есть опять же использован модуль DC-DC конвертера .

В отличие от других конвертеров, преобразователи с питанием от сети переменного тока обязательно имеют гальваническую развязку вторичной обмотки высокочастотного импульсного трансформатора от первичной . Как правило, цепь обратной связи в таких блоках развязана с применением оптопары. Справедливости ради нужно отметить, что маломощные блоки такого типа бывают и в бескорпусном исполнении.

4. DC-DC конвертор для монтажа на печатную плату

Эти миниатюрные блоки питания обладают мощностью от 0,25 до 100 ватт. Они допускают разброс входного напряжения: 3-3,6В, 4,5-9В, 9-18В, 13-16,6В, 9-36В, 18-36В, 18-72В, 36-72В, и 36-75В. В зависимости от фирмы – производителя диапазоны питающих напряжений могут отличаться. Некоторые преобразователи допускают регулировку выходного напряжения и перевод блока в режим ожидания. Стандартный же ряд выходных напряжений блоков: 5В, 12В, 15В.

DC-DC конвертеры для монтажа на печатную плату имеют электрически прочную изоляцию (1500 В), а максимально допустимая температура может достигать 90 градусов по Цельсию. Наибольший интерес для разработчиков представляют преобразователи мощностью 3 ватта. Стоимость таких конвертеров – от единиц до десятков долларов.

У всех современных промышленных импульсных DC-DC преобразователей значение рабочей частоты лежит выше 50кГц, и достигает 300кГц. Это утверждение справедливо для импульсных трансформаторов и дросселей на феррите, поскольку для применяемых в описанных преобразователях трансформаторов и дросселей везде задействованы именно ферритовые сердечники.

Выпускаемые промышленностью специализированные интегральные микросхемы для импульсных преобразователей очень часто имеют строго установленную частоту, которая всегда выше 50кГц. Если используется ШИМ контроллер , то соответствующая частота задается внешними компонентами.

Повышающие преобразователи постоянного напряжения в постоянное

“Документация” – техническая информация по применению электронных компонентов , особенностях построения различных радиотехнических и электронных схем , а также документация по особенностям работы с инженерным программным обеспечением и нормативные документы (ГОСТ).

Читать еще:  Установка пандуса. Как сделать пандус

Оглавление

Повышающие преобразователи постоянного напряжения в постоянное (Step-Up Voltage Converter, Step-Up Voltage Regulator, Boost Converter, ПвП), имеют ту особенность, что выходное напряжение V этих преобразователей больше входного нестабилизированного напряжения VIN. Кроме того, V стабильно при изменении VIN и выходного тока I преобразователя. Это обстоятельство определяет применение ПвП для питания стабилизированным напряжением главным образом электронной аппаратуры с батарейным питанием (входное напряжение в этом случае невелико) или некоторых блоков такой аппаратуры, для питания которых требуется напряжение большей величины, чем для остальных.

В статье рассмотрен принцип действия ПвП, описаны интегральные схемы для реализации таких преобразователей вместе с основными их электрическими параметрами. Как правило, такие ПвП обеспечивают положительное V.

Принцип работы

Основная схема ПвП приведена на рис.1 а. Ключ S является биполярным транзистором структуры n-p-п или МОП-транзистором. Интервал времени, в течение которого транзистор открыт (ключ замкнут, отрезок t0N на рис.1б), и интервал, когда транзистор закрыт (ключ разомкнут, отрезок t0FF), определяются схемой управления CON. При замыкании ключа (моменты t и t2 на рис. 1.б) напряжение в точке соединения диода VD и катушки L равно нулю (U = 0), если пренебречь падением напряжения на S и Rs. Диод VD закрыт благодаря положительной величине выходного напряжения, поддерживаемого зарядом, накопленным в конденсаторе С. К катушке L приложено входное напряжение VIN, и через нее и S проходит линейно возрастающий ток

благодаря которому в катушке накапливается энергия магнитного поля. За время tON ток в катушке возрастает на величину:

Рис. 1.а Основная схема ПвП

При этом заряженный конденсатор С обеспечивает выходной ток Io схемы. При размыкании S (момент t1 на рис.1б) полярность напряжения, приложенного к L, меняет свое направление и становится такой, как показано на рис. 1а. Это напряжение складывается с VIN, обеспечивая соотношение U > Vo и открывание диода VD. Приложенное к L внешнее напряжение, равное VIN – Vo, определяет проходящий через нее ток:

Его величина со временем линейно уменьшается, т.к. катушка отдает свою энергию для поддержания тока I и восстановления заряда С. За время t0FF отдается лишь часть накопленной энергии, поэтому изменение тока составляет (с учетом соотношения величин VIN и Vo)

Знак минус в верхнем индексе тока указывает на то, что этот ток течет за счет расходования энергии катушки. Исходя из очевидного соотношения

которое имеет место в установившемся режиме работы, получаем зависимость:

(1)

Отсюда видно, что всегда Vo > VIN, т.е. схема является ПвП. Обычно CON задает постоянную частоту

импульсов UCON, управляющих S. При этом Vo можно изменять, варьируя t0FF, что означает широтно-импульсную модуляцию (ШИМ) (Pulse-Width Modulation, PWM). Более того, всякое нежелательное изменение Vo приводит к такому изменению t0FF, чтобы восстановилось исходное значение Vo. Таким образом, работа ПвП в качестве стабилизатора обеспечивается CON через непрерывное изменение коэффициента заполнения (Duty Factor):

управляющих импульсов. Выражение (1) часто записывается в виде

Рис. 1. б Временные диаграммы, поясняющие принцип работы

Во время работы ПвП могут возникать скачки тока iL из-за резкого изменения VIN или сопротивления нагрузки на выходе, что может привести, пусть даже и за короткое время, к нежелательному насыщению катушки. Избежать этого можно при помощи токовой ШИМ, при которой CON регулирует ток через замкнутые контакты S, для чего используется резистор Rs, показанный на рис. 1а пунктирной линией. Реже используются ПвП с частотно-импульсной модуляцией (ЧИМ, Pulse-Frequency Modulation, PFM), при которой изменяются одновременно fo и δ.

Ток iL имеет постоянную составляющую l, которая является выходным током ПвП, и нежелательную переменную составляющую ΔIL, почти полностью проходящую через конденсатор С. Для нормальной работы ПвП рекомендуется обеспечить соотношение ΔIL=0,4 I. Оставшаяся небольшая часть ΔIL проходит через нагрузку. Это означает, что выходное напряжение Vo имеет переменную составляющую. В этом заключается серьезный недостаток ПвП, который ограничивает их использование в электронной аппаратуре, обеспечивающей усиление слабых сигналов.

Уменьшение IО означает накопление в L и, соответственно, отдачу нагрузке меньшей энергии. При Iomin = 0,5·ΔIL (пунктирная линия на рис.1.б), накопленная энергия и IL становятся равны 0 в момент замыкания ключа S. Дальнейшее уменьшение iО не рекомендуется, хотя такой режим работы, в принципе, возможен. Для того чтобы избежать режима работы, при котором i

Рис. 2.а. ИС для ПВП

сравнивается компаратором Comp с линейно изменяющимся напряжением фиксированной частоты fo, генерируемым встроенным генератором OSC. Результатом этого сравнения являются импульсы ШИМ на выходе компаратора, которые управляют ключом S через буфер BUF. В некоторых ИС ключ S устанавливается вне схемы. В этом случае вывод SW является выходом BUF (рис.2.б). Достаточно редко диод VD является конструктивным элементом ИС (рис.2.в).

Рис. 2.б. Вывод SW является выходом BUF

Рис. 2. в. Иногда диод VD является конструктивным элементом ИС

Схема, приведенная на рис.2а, рассчитана на фиксированное выходное напряжение Vo. Существуют ПвП с регулируемым Vo, при использовании которых R1-R2 являются внешним делителем, а вывод FB непосредственно соединен с инвертирующим входом усилителя ошибки.

Одной из постоянно расширяющихся областей применения ПвП служит аппаратура, питаемая от одной батареи (Single-Cell Instruments). Это щелочной или никель-кадмиевый элемент с напряжением 1,15. 1,56 В или литиевый элемент с напряжением 2,30. 3,10 В. Так как при этом требуется, чтобы ИС нормально работала вплоть до напряжения питания VIN = 1 В, она имеет иную конструкция, приведенную на рис.2.г. Напряжение VIN через фильтрующую катушку Lo (ее индуктивность — несколько миллигенри) питает только генератор OSC. На своем дополнительном выходе он создает достаточно высокое переменное напряжение, которое преобразуется в постоянное выпрямительным блоком REC. Полученное постоянное напряжение V+, обычно 12 В, фильтруется внешним конденсатором С емкостью около 1 мкФ и стабилизируется VR, который, в свою очередь, питает остальные блоки ИС.>

Рис. 2. г. Конструкция ПнП, работающая на одной батареи

Основные параметры

Они совпадают с параметрами понижающих преобразователей, рассмотренных в [2]. Исключение составляет естественное отсутствие параметра (VIN – V)min но вместо него приводится величина минимальной разности между входным и выходным напряжениями.

В таблице приведены основные параметры ИС ПвП двух крупнейших мировых производителей, а также указан использованный вид модуляции. Здесь LM — это изделия фирмы National Semiconductor, MAX — схемы фирмы MAXIM.

Рис. 3 Цоколевка ИС, приведенных в таблице 1

Для ПвП с ЧИМ в качестве параметров даются минимальный интервал времени tOFF MIN, в течение которого ключ замкнут, и максимальный интервал времени t0N max– в течение которого ключ разомкнут. Цоколевка ИС, приведенных в таблице, дана на рис. З.

  1. Куцаров, С. Понижающие преобразователи постоянного напряжения в постоянное. — Радиомир, 2003, N 7.
  2. Куцаров, С. Применение понижающих преобразователей. — Радиомир, 2003, N 10.

Автор: С. Куцаров

Оглавление

Мнения читателей
  • Вовану / 08.11.2012 – 16:50
    У меня тоже муравей. Так вот заряд идет наверно чутка выше тысячи, где-то на 1500-1800. Проверяй щетки, регулируй реле/ставь электронное
  • Вован / 25.02.2011 – 18:11
    У меня восход с мотором от муравья. В конструкции мотора используется династартер дс 1а. Нужное напряжение он дает после 3000 об/мин. В связи с особенностями эксплуатации (езда со скоростью 40 км/ч) аккумулятор почти не заряжается. Реле регулятор использую от ваз 2106. решил между реле и возбудительной обмоткой генератора воткнуть повышающий преобразователь. Что посоветуйте?
  • сергей / 04.02.2010 – 20:27
    нужна схема 12-24в 12-220в

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Ссылка на основную публикацию
Adblock
detector
Тип микро-
схемы
Тип моду-
ляции
Vo,В Iomax,A КПД,% fo,кГц VIN LR LdR VREF,B
LM2577 ШИМ 12;
15;
5..50
3 80 52 3,5..40 20мВ 20мВ 1,23
LM2587 ШИМ 3,3;
5,0;
12;
5..50
5 75 100 4..40 20 мВ 20 мВ 1,23
МАХ654 ШИМ 5 0,04 18 1,15..1,56 1,25
МАХ655 ШИМ 5 0,06 18 2,30..3,10 1,25
МАХ657 ШИМ 3 0,06 18 1,15..1,56 1,25
МАХ659 ШИМ 3 0,06 18 2,30..3,10 1,25
МАХ731 ТШИМ 5 0,2 82. 87 170 2,5. 5,52 0,2%/В 0,005%/мА 1,23
МАХ732 ТШИМ 12 0,2 82. 92 170 4,0..9,3 0,2%/В 0,0035%/мА 1,23
МАХ733 ТШИМ 15 0,125 82..92 170 4,0..9,3 0,2%/В 0,0035%/мА 1,23
МАХ734 ТШИМ 12 0,12 85 170 4,0..11,0 0,2%/В 0,0035%/мА 1,23
МАХ751 ТШИМ 5 0,15 86 170 2,7..5,0 0,2%/В 0,005%/мА 1,23
МАХ752 ТШИМ 1,8..15 0,2 85..95 170 1,8..11,0 0,2%/В 0,0035%/мА 1,23
МАХ756 ЧИМ 3,3;5 0,2 87