Изделия из полимерных материалов
Iddc.ru

Все об электрике

Изделия из полимерных материалов

Полимерные материалы

Развитие современных технологий привело к появлению материалов, которые обладают исключительными эксплуатационными качествами. Полимерные материалы могут обладать молекулярной массой от нескольких тысяч до нескольким миллионов. Основные качества подобных материалов определяют их большое распространение. С каждым годом на долю полимеров приходится все большее количество выпускаемой продукции. Именно поэтому рассмотрим их особенности подробнее.

Свойства полимеров

Применение полимеров весьма обширно. Это связано с особыми качествами, которых обладает рассматриваемый материал. Сегодня полимерные материалы встречаются в самых различных областях, присутствуют практически в каждом доме. Процесс производства полимерных материалов постоянно совершенствуется, проводится изменение состава, за счет чего он приобретает новые эксплуатационные качества.

Физические свойства полимеров можно охарактеризовать следующим образом:

  1. Низкий показатель коэффициента теплопроводности. Именно поэтому некоторые полимеры могут применяться в качестве изоляции при проведении некоторых работ.
  2. Высокий показатель ТКЛР обуславливается относительно высокой подвижностью связей и постоянной сменой коэффициента деформации.
  3. Несмотря на высокий показатель ТКЛР, полимерные материалы идеально подходят для напыления. В последнее время часто можно встретить ситуацию, когда полимер наносится на поверхность в виде тонкого слоя для придания металлу и другим материал антикоррозионных качеств. Современные технологии нанесения позволяют получать тонкую защитную пленку.
  4. Удельная масса может варьироваться в достаточно большом диапазоне в зависимости от особенностей конкретного состава.
  5. Довольно высокий предел прочности от части вызван повышенной пластичностью. Конечно, показатель существенно уступает тем, которые имеет металл или сплавы.
  6. Прочность полимеров относительно невысокая. Для того чтобы повысить значение ударной вязкости проводится добавление в состав различных дополнительных компонентов, за счет чего получаются особые разновидности полимеров.
  7. Стоит учитывать низкую рабочую температуру. Полимерные материалы плохо справляются с нагревом. Именно поэтому многие варианты исполнения могут работать при температуре не выше 80 градусов Цельсия. Если превысить рекомендуемый температурный порог, то есть вероятность, что сильный нагрев станет причиной повышения пластичности полимерного материала. Слишком высокая пластичность становится причиной снижения прочности и изменение других физических свойств.
  8. Удельное сопротивление может варьироваться в достаточно большом диапазоне. Примером таких полимеров назовем ПВХ твердый, который имеет 10 17 Ом×см.
  9. Многие полимерные материалы имеют повышенную горючесть. Этот момент определяет то, что в некоторых отраслях промышленности использовать полимеры нельзя. Кроме этого химический состав определяет то, что при горении могут выделять токсичные вещества или едкий дым.
  10. При применении особой технологии производства поверхность может иметь сниженный показатель коэффициента трения по стали. За счет этого покрытие служит намного дольше, и на нем не появляются дефекты.
  11. Коэффициент линейного расширения составляет от 70 до 200 10 -6 на градус Цельсия.

Напольное покрытие из вспененного полимерного материала

Рассматривая характеристики распространенных полимеров, не стоит забывать о нижеприведенных качествах:

  1. Хорошие диэлектрические свойства позволяют использовать полимерный материал без опаски поражения электричеством. Именно поэтому полимеры довольно часто применяют при создании инструментов и оборудования, предназначенного для работы с электричеством.
  2. Линейные полимеры способны восстанавливать свою первоначальную форму после длительного воздействия нагрузки. Примером можно назвать воздействие поперечной нагрузки, которая изгибает деталь, но после ее пропадания форма не сохраняется.
  3. Важное качество всех полимеров – существенное изменение эксплуатационных качеств при введении небольшого количества примесей.
  4. Сегодня полимерные материалы встречаются в самых различных агрегатных состояниях. Примером можно назвать клей, смазку, герметик, краски, некоторые твердые полимерные материалы. Большое распространение получили твердые пластмассы, которые используются при производстве самого различного оборудования. Как ранее было отмечено, вещество обладает высокой эластичностью, за счет чего был получен силикон, резина, поролон и другие подобные полимерные материалы.

Стоит учитывать тот момент, что химический состав полимерных материалов может существенно отличаться. В ГОСТ представлена процедура качественной оценки, которая основана на баллах.

Большое распространение полимерные материалы получили в промышленности, так как имеют повышенную стойкость к неорганическим реактивам. Именно поэтому они применяются при производстве баков для чистой воды или особо чистых реактивов.

Вся приведенная выше информация определяет то, что полимеры получили просто огромное распространение в самых различных отраслях. Однако не стоит забывать, что насчитывается несколько десятков основных типов полимерных материалов, все они обладают своими определенными качествами. Именно поэтому следует подробно рассмотреть классификацию полимерных материалов.

Классификация полимеров

Есть довольно большое количество показателей, по которым синтетические полимерные материалы могут классифицироваться. При этом классификация затрагивает и основные эксплуатационные качества. Именно поэтому рассмотрим разновидности полимерных материалов подробнее.

Классификация проводится по агрегатному состоянию:

  1. Твердые. Практически все люди знакомы с полимерами, так как они используются при изготовлении корпусов бытовой техники и других предметов быты. Другое название этого материала – пластмасса. В твердой форме полимерный материал обладает достаточно высокой прочностью и пластичностью.
  2. Эластичные материалы. Высокая эластичность структуры получила применение при производстве резины, поролона, силикона и других подобных материалов. Большая часть встречается в строительстве в качестве изоляции, что также связано с основными эксплуатационными качествами.
  3. Жидкости. На основе полимеров производится достаточно большое количество самых различных жидких веществ, большая часть которых также применима в строительстве. Примером назовем краски, лаки, герметики и многое другое.

Различные виды полимерных материалов обладают разными эксплуатационными качествами. Именно поэтому следует рассматривать их особенности. Есть в продаже полимеры, которые до соединения находятся в жидком состоянии, но после вступления в реакцию становятся твердыми.

Классификация полимеров по происхождению:

  1. Искусственные вещества, характеризующиеся высокомолекулярной массой.
  2. Биополимеры, которые еще называют природными.
  3. Синтетические.

Большее распространение получили полимерные материалы синтетического происхождения, так как за счет смешивания самых различных веществ достигаются исключительные эксплуатационные качества. Искусственные полимеры сегодня встречаются практически в каждом доме.

Классификация синтетических материалов проводится также по особенностям молекулярной сетки:

Варианты структуры полимеров

Классификация проводится и по природе гетероатома:

  1. В главную цепь может входить атом кислорода. Подобное строение цепочки позволяет получить сложные и простые полиэфиры и перекиси.
  2. ВМС, которые характеризуются наличием атома серы в основной цепочке. За счет подобного строения получают политиоэфиры.
  3. Можно встретить и соединения, в главной цепочке которых есть атомы фосфора.
  4. В главную цепочку могут входить и атомы кислорода и с азотом. Наиболее распространенным примером подобного строения можно назвать полиуретаны.
  5. Полиамины и полиамиды – яркие представители полимерных материалов, которые в своей главной цепочке имеют атомы азота.

Кроме этого выделяют две большие группы полимерных материалов:

  1. Карбоцепные – вариант, который имеет основную цепочку макромолекулы ВМС с одним атомом углерода.
  2. Гетероцепные – структура, которая кроме атома углерода имеет и атомы других веществ.

Существует просто огромное количество разновидностей карбоцепных полимеров:

  1. Высокомолекулярные соединения, которые называют тефлоном.
  2. Полимерные спирты.
  3. Структуры с насыщенными главными цепочками.
  4. Цепочки с насыщенными основными связями, которые представлены полиэтиленом и полипропиленом. Отметим, что сегодня подобные разновидности полимеров получили просто огромное распространение, их применяют при производстве строительных материалов и других вещей.
  5. ВМС, которые получаются на основе переработки спиртов.
  6. Вещества, полученные при переработке карбоновой кислоты.
  7. Вещества, полученные на основе нитрилов.
  8. Материалы, которые были получены на основе ароматических углеводородов. Самым распространенным представителем этой группы является полистирол. Он получил широкое применение по причине высоких изоляционных качеств. Сегодня полистирол используют для изоляции жилых и нежилых помещений, транспортных средств и другой техники.

Вся приведенная выше информация определяет то, что существует просто огромное количество разновидностей полимерных материалов. Этот момент также определяет их широкое распространение, применение практически во всех отраслях промышленности и сферах деятельности человека.

Применение полимеров

Современная экономика и жизнь людей просто не может обойтись без полимерных материалов. Это связано с тем, что они обладают относительно невысокой стоимостью, при необходимости основные эксплуатационные качества могут изменяться под конкретные задачи.

Применение полимерных материалов

Рассматривая применение полимеров, следует уделить внимание нижеприведенным моментам:

  1. Активное производство началось в начале 20 века. Изначально технология производства заключалась в переработке низкомолекулярного сырья и целлюлозы. В результате их переработки появились краски и пленки.
  2. Современные полимеры повлияли на развитие всех отраслей промышленности. В момент развития кинематографа появление прозрачных пленок позволило снимать первые картины.
  3. В современном мире рассматриваемые полимерные материалы применяется практически во всех отраслях промышленности. Примером можно назвать использование полимеров при производстве игрушек, оборудования, лекарственных средств, тканей, строительных материалов и многого другого. Кроме этого они становятся частью других материалов для изменения их основных эксплуатационных качеств, применяются при обработке натуральной кожи или резины. За счет применения пластика производители смогли снизить стоимость компьютеров и мобильных девайсов, сделать их легче и тоньше. Если сравнить металл и полимеры, то разница в стоимости может быть просто огромной.
  4. Совершенствование технологии производства полимерных материалов привело к появлению более современных композитов, которые стали использовать в машиностроении и многих других отраслях промышленности.
  5. Применение полимера связано и с космосом. Можно назвать примером создание как летальных аппаратов, так и различных спутников. Существенное снижение массы позволяет с меньшими затратами преодолеть земное притяжение. Кроме этого полимеры хорошо известны тем, что выдерживают воздействие окружающей среды, представленное перепадами температуры и влажности.

Изначально в качестве сырья при производстве полимеров использовали низкокачественные низкомолекулярные вещества. Именно поэтому у них было огромное количество недостатков. Однако совершенствование технологий производства привело к тому, что сегодня полимеры обладают высокой безопасностью при применении, не выделяют вредных веществ в окружающую среду. Поэтому они стали все чаще использоваться при изготовлении вещей, применяемых в быту.

В заключение отметим, что рассматриваемая область постоянно развивается, за счет чего стали появляться композитные материалы. Они обходятся намного дороже полимеров, но при этом обладают исключительными физическими, химическими и механическими качествами. В ближайшее время полимерные материалы будут все также активно применяться в самых различных областях, так как альтернативы для их замены пока не существует.

“Виды полимерного сырья”

Термин «полимерные материалы» является обобщающим. Он объединяет три обширных группы синтетических пластиков, а именно: полимеры; пластмассы и их морфологическую разновидность – полимерные композиционные материалы (ПКМ) или, как их еще называют, армированные пластики. Общее для перечисленных групп то, что их обязательной частью является полимерная составляющая, которая и определяет основные термодеформационные и технологические свойства материала. Полимерная составляющая представляет собой органическое высокомолекулярное вещество, полученное в результате химической реакции между молекулами исходных низкомолекулярных веществ – мономеров.

Полимерами принято называть высокомолекулярные вещества (гомополимеры) с введенными в них добавками, а именно стабилизаторами, ингибиторами, пластификаторами, смазками, антирадами и т. д. Физически полимеры являются гомофазными материалами, они сохраняют все присущие гомополимерам физико-химические особенности.

Пластмассами называются композиционные материалы на основе полимеров, содержащие дисперсные или коротковолокнистые наполнители, пигменты и иные сыпучие компоненты. Наполнители не образуют непрерывной фазы. Они (дисперсная среда) располагаются в полимерной матрице (дисперсионная среда). Физически пластмассы представляют собой гетерофазные материалы с изотропными (одинаковыми во всех направлениях) физическими макросвойствами.
Пластмассы могут быть разделены на две основные группы – термопластические и термореактивные. Термопластические – это те, которые после формирования могут быть расплавлены и снова сформованы; термореактивные, сформованные раз, уже не плавятся и не могут принять другую форму под воздействием температуры и давления. Почти все пластмассы, используемые в упаковках, относятся к термопластическим, например, полиэтилен и полипропилен, полистирол, поливинилхлорид, полиэтилентерефталат, найлон (капрон), поликарбонат, поливинилацетат, поливиниловый спирт и другие.
Пластмассы также можно располагать по категориям в зависимости от метода, который используется для их полимеризации, на полимеры, полученные по механизму полиприсоединения или поликонденсации. Полимеры, полученные полиприсоединением, производятся с помощью механизма, который включает либо свободные радикалы, либо ионы, по которому малые молекулы быстро присоединяются к растущей цепи, без образования сопутствующих молекул. Поликонденсационные полимеры производятся с помощью реакции функциональных групп в молекулах друг с другом, так что постадийно образуется длинная цепь полимера, и обычно происходит образование низкомолекулярного сопутствующего продукта, например воды, во время каждой стадии реакции. Большинство упаковочных полимеров, включая полиолефины, поливинилхлорид и полистирол – это полимеры, полученные по механизму полиприсоединения (полимеризации).

Реакция полимеризации – это последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера. Молекулы алкена, вступающие в реакцию полимеризации, называются мономерами. Число элементарных звеньев, повторяющихся в макромолекуле, называется степенью полимеризации (обозначается n). В зависимости от степени полимеризации из одних и тех же мономеров можно получать вещества с различными свойствами. Так, полиэтилен с короткими цепями (n = 20) является жидкостью, обладающей смазочными свойствами. Полиэтилен с длиной цепи в 1500-2000 звеньев представляет собой твердый, но гибкий пластический материал, из которого можно получать пленки, изготовлять бутылки и другую посуду, эластичные трубы и т. д. Наконец, полиэтилен с длиной цели в 5-6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, жесткие трубы, прочные нити.

Если в реакции полимеризации принимает участие небольшое число молекул, то образуются низкомолекулярные вещества, например димеры, тримеры и т. д. Условия протекания реакций полимеризации весьма различные. В некоторых случаях необходимы катализаторы и высокое давление. Но главным фактором является строение молекулы мономера. В реакцию полимеризации вступают непредельные (ненасыщенные) соединения за счет разрыва кратных связей.

Полимеризация – это цепная реакция, и, для того чтобы она началась, необходимо активировать молекулы мономера с помощью так называемых инициаторов. Такими инициаторами реакции могут быть свободные радикалы или ионы (катионы, анионы). В зависимости от природы инициатора различают радикальный, катионный или анионный механизмы полимеризации.

Химические и физические свойства пластиков обусловлены их химическим составом, средней молекулярной массой и распределением молекулярной массы, историей обработки (и использования), и наличием добавок.

Полимерные композиционные материалы являются разновидностью пластмасс. Они отличаются тем, что в них используются не дисперсные, а армирующие, то есть усиливающие наполнители (волокна, ткани, ленты, войлок, монокристаллы), образующие в ПКМ самостоятельную непрерывную фазу. Отдельные разновидности таких ПКМ называют слоистыми пластиками. Такая морфология позволяет получить пластики с весьма высокими деформационно-прочностными, усталостными, электрофизическими, акустическими и иными целевыми характеристиками, соответствующими самым высоким современным требованиям.

Структурные формулы полимеров кратко записывают так: формулу элементарного звена заключают в скобки и справа внизу ставят букву n. Например, структурная формула полиэтилена (-СН2-СН2-)n. Легко заключить, что название полимера слагается из названия мономера и приставки поли-, например полиэтилен, поливинилхлорид, полистирол и т. д.

Наиболее распространенными полимерами углеводородного строения являются полиэтилен и полипропилен.

Полиэтилен получают полимеризацией этилена. Полипропилен получают стереоспецифической полимеризацией пропилена (пропена).
Стереоспецифическая полимеризация – это процесс получения полимера со строго упорядоченным пространственным строением.

К полимеризации способны многие другие соединения – производные этилена, имеющие общую формулу СН2=СН-X, где Х – различные атомы или группы атомов.

Полиолефины – это класс полимеров одинаковой химической природы (химическая формула -(СН2)-n ) с разнообразным пространственным строением молекулярных цепей, включающий в себя полиэтилен и полипропилен. Кстати сказать, все углеводы, к примеру, природный газ, сахар, парафин и дерево имеют схожее химическое строение. Всего в мире ежегодно производиться 150 млн. т. полимеров, а полеолефины составляют примерно 60% от этого количества. В будущим полиолефины будут окружать нас в гораздо большей степени, чем сегодня, поэтому полезно присмотреться к ним повнимательнее.
Комплекс свойств полиолефинов, в том числе такие, как стойкость к ультрафиолету, окислителям, к разрыву, протыканию, усадке при нагреве и к раздиру, меняется в очень широких пределах в зависимости от степени ориентационной вытяжки молекул в процессе получения полимерных материалов и изделий.
Особенно следует подчеркнуть, что полеолефины экологически чище большинства применяемых человеком материалов. При производстве, транспортировке и обработке стекла, дерева и бумаги, бетона и металла используется много энергии, при выработке которой неизбежно загрязняется окружающая среда. При утилизации традиционных материалов также выделяются вредные вещества и затрачивается энергия. Полиолефины производятся и утилизуются без выделения вредных веществ и при минимальных затаратах энергии, причем при сжигании полиолефинов выделяется большое количество чистого тепла с побочными продуктами в виде водяного пара и углекислого газа.

Полиэтилен
Около 60% всех пластиков, используемых для упаковки – это полиэтилен, который используется так широко главным образом благодаря его низкой стоимости, но также благодаря его отличным свойствам для многих областей применения.

Полиэтилен высокой плотности (ПЭНД – низкого давления) имеет самую простую структуру из всех пластиков, он состоит из повторяющихся звеньев этилена:
-(CH2-CH2)-n полиэтилен высокой плотности.

Полиэтилен низкой плотности (ПЭВД – высокого давления) имеет ту же химическую формулу, но отличается тем, что его структура разветвленная:
-(CH2-CHR)-n полиэтилен низкой плотности,
где R может быть -H, -(CH2)n, -CH3, или более сложной структурой с вторичным разветвлением.

Полиэтилен, благодаря своему простому химическому строению, легко складывается в кристаллическую решетку, и, следовательно, имеет тенденцию к высокой степени кристалличности. Разветвление цепи препятствует этой способности к кристаллизации, что приводит к меньшему числу молекул на единицу объема, и, следовательно, меньшей плотности.

ПЭВД – полиэтилен высокого давления. Пластичен, слегка матовый, воскообразный на ощупь, перерабатывается методом экструзии в рукавную пленку с раздувом или в плоскую пленку через плоскощелевую головку и охлаждаемый валик. Пленка из ПЭВД прочна при растяжении и сжатии, стойка к удару и раздиру, прочна при низких температурах. Имеет особенность – довольно низкая температура размягчения (около 100 градусов Цельсия).

ПЭНД – полиэтилен низкого давления. Пленка из ПЭНД – жесткая, прочная, менее воскообразная на ощупь по сравнению с пленками ПЭВД. Получается экструзией рукава с раздувом или экструзией плоского рукава. Температура размягчения 121°С позволяет производить стерилизацию паром. Морозостойкость этих пленок такая же, как и у пленок из ПЭВД. Устойчивость к растяжению и сжатию – высокая, а сопротивление к удару и раздиру меньше, чем у пленок из ПЭВД. Пленки из ПЭНД – это прекрасная преграда влаге. Стойки к жирам, маслам.
“Шуршащий” пакет-майка, в который вы упаковываете покупки, изготовлен именно из ПЭНД.
Существует два основных типа ПЭНД. Более «старый» тип, произведенный первым в 1930-х годах, полимеризуется при высоких температурах и давлениях, условиях, которые достаточно энергетичны, чтобы обеспечить заметную скорость реакций по цепному механизму, которые приводят к образованию разветвления как с длинными, так и с короткими цепями. Этот тип ПЭНД иногда называется полиэтиленом высокого давления (ПВД, ВД-ПЭНД, из-за высокого давления), если есть необходимость отличать его от линейного полиэтилена низкого давления, более «молодого» типа ПЭВД.

При комнатной температуры полиэтилен – довольно мягкий и гибкий материал. Он хорошо сохраняет эту гибкость в условиях холода, так что применим в упаковке замороженных пищевых продуктов. Однако при повышенных температурах, таких как 100°С, он становится слишком мягким для ряда применений. ПЭНД отличается более высокой хрупкостью и температурой размягчения, чем ПЭВД, но все же не является подходящим контейнеров горячего заполнения.

Около 30% всех пластиков, используемых для упаковки – это ПЭНД. Это наиболее широко используемый пластик для бутылок, из-за его низкой стоимости, простоты формования, и отличных эксплуатационных качеств, для многих областей применения. В своей естественной форме ПЭНД имеет молочно-белый, полупрозрачный вид, и таким образом, не подходит для областей применения, где требуется исключительная прозрачность.

Один недостаток использования ПЭНД в некоторых из областей применения – его тенденция к растрескиванию под напряжением при взаимодействии внешней среды, определяемая как разрушение пластикового контейнера при условиях одновременного напряжения и соприкосновения с продуктом, что в отдельности не приводит к разрушению. Растрескивание под напряжением при взаимодействии внешней среды в полиэтилене соотносится с кристалличностью полимера.

ПЭВД является наиболее широко применяемым упаковочным полимером, соответствующий примерно одной трети всех упаковочных пластиков. Из-за его низкой кристалличности, это более мягкий, более гибкий материал, чем ПЭНД. Благодаря низкой стоимости, он является предпочтительным материалом для пакетов и сумок. ПЭВД отличается лучшей прозрачностью, чем ПЭНД, но все же не обладает кристальной чистотой, которая желательна для некоторых областей применения упаковок.

Полипропилен
Отличается прекрасной прозрачностью (при быстром охлаждении в процессе формообразования), высокой температурой плавления, химической и водостойкостью. ПП пропускает водяные пары, что делает его незаменимым для “дышащей” упаковки продуктов питания (хлеба, зелени, бакалеи), а также в строительстве для гидро-ветроизоляции. ПП чувствителен к кислороду и окислителям. Перерабатывается методом экструзии с раздувом или через плоскощелевую головку с поливом на барабан или охлаждением в водяной бане. Имеет хорошую прозрачность и блеск, высокую химическую стойкость, особенно к маслам и жирам, не растрескивается под воздействием окружающей среды.

Поливинилхлорид
В чистом виде применяется редко из-за хрупкости и неэластичности. Недорог. Может перерабатываться в пленку методом экструзии с раздувом, либо плоскощелевой экструзии. Расплав высоковязкий. ПВХ термически нестабилен и коррозионно активен. При перегреве и горении выделяет высокотоксичное соединение хлора – диоксин. Широко распространился в 60-70е годы. Вытесняется более экологичным полипропиленом.

Полимеры. Общие сведения

Что такое полимер?

Полимерами называют высокомолекулярные химические соединения (ВМС) вещества, обладающие молекулярной массой от тысяч до нескольких миллионов атомных единиц. Макромолекулы полимеров образовываются из огромного количества повторяющихся мономерных звеньев. Свойства полимеров зависят от химической природы мономера, молекулярной массы, методом производства полимера, стереоструктурой молекул (расположением в пространстве) и степенью их разветвленности, а также связей между молекулами различной природы.

Большинство полимеров являются по природе диэлектриками, также имеют низкую теплопроводность и достаточно высокие механические характеристики.

Классификация полимеров

Разделение полимеров на четкие классы – достаточно сложное дело. В современной теории существует несколько подразделений полимерных материалов по видам:

  • полимеры могут быть природными или синтетическими, также бывают модифицированные полимеры;
  • по типу реакции образования полимеры делятся на полимеризационные и поликонденсационные;
  • в зависимости от химического состава полимеры подразделяются на неорганические (например, силиконы), органические полимеры (например, полистирол) и элементоорганические полимеры (например, фторопласты). При этом основной вид используемых полимеров – органические;
  • по методу переработки и соответствующему отношению к воздействию на них температуры полимеры делят на термопластичные (термопласты) и термореактивные (реактопласты). Первые способны перерабатываться многократно, вторые – как правило, нет;
  • по составу мономерных звеньев полимеры делят на гомополимеры и сополимеры (гетерополимеры);
  • также полимеры разделяются по строению главной цепи на гомоцепные и гетероцепные, по пространственному расположению мономерных звеньев на стереорегулярные и атактические (нестереорегулярные), по степени разветвления на линейные, разветвленные, лестничные и сшитые и т.д.

Рис. 1 Структура полимеров

Образование полимеров

В природе биологические полимеры или биополимеры получаются естественным путем в процессе жизнедеятельности растительных и животных организмов. Искусственные же полимеры производят как правило нефтехимические и газохимические предприятия путем двух основных видов химических реакций: полимеризации и поликонденсации

Полимеризация – это процесс синтеза полимера путем присоединения повторяющихся цепочек молекул (звеньев) мономера к активному центру роста макромолекулы высокомолекулярного соединения. В упрощенном виде механизм полимеризации можно расписать по следующим стадиям:

  • образование центров полимеризации;
  • рост макромолекул полимера при присоединения очередных звеньев;
  • возникновение новых центров полимеризации на других молекулы и их интенсивный рост;
  • возникновение разветвленных молекул полимеров;
  • прекращение роста макромолекул.

Обычно полимеризация не возникает при нормальных условиях. Для начала химического процесса полимеризации на низкомолекулярное сырье оказывают разнообразные методы воздействия в зависимости от каждого конкретного техпроцесса: воздействие светом или другим типом облучением, повышенным давление, высокими температурами. При этом, наиболее эффективно процесс идет в среде катализатора, подбираемого для каждого конкретного процесса получения определенного полимера персонально. При образовании полимеров при помощи полимеризации не выделяется побочных веществ реакции, химический состав веществ остается неизменным, но меняется структура связей в веществе.

Рис. 2 Завод по производству полиэтилена

Поликонденсация – это процесс синтеза полимеров из низкомолекулярных веществ при помощи перегруппировки атомов выделения побочных продуктов поликонденсации. Это могут быть различные низкомолекулярные соединения, например вода. Методом поликонденсации выпускают такие крупнотоннажные полимеры, как полиуретаны, поликарбонаты, фенолоальдегидные смолы.

Основные свойства полимеров

Строение макромолекул в виде цепи, а также различные типы связей между ними, возникшие при образовании молекул, определяют природу специальных физико-химических характеристик полимеров. Среди них важная особенность к пленко- и волокнообразованию, способности полимеров к вытяжке, прочности в определенных направлениях, эластичности и т.п. Такое строение полимерных молекул определяет тот факт, что вязкость растворов полимеров обычно высока. ВМС могут в высокой степени набухать в жидкостях, при этом образуя несколько видов систем, по свойствам находящихся между твердым жидким агрегатным состояниями.

Количество мономерных звеньев в макромолекулах полимеров и природа звена определяют молекулярную массу всего ВМС. Любой полимер всегда состоит из множества макромолекул, каждая из которых индивидуальна и отличается от других в том числе по длине цепи. Из-за этого факта молекулярная масса полимеров – всегда примерная средняя величина. Также из описанного следует, что важной характеристикой является молекулярно-массовое распределение (ММР), которое показывает в каком диапазоне молекулярных масс молекулы представлены в конкретном образце полимера. Чем меньше молекулярно-массовое распределение, тем стабильнее свойства полимеров и тем проще описать методики их переработки.

Полимеры могут находиться в нескольких агрегатных состояниях, которые отличаются от состояний обычных низкомолекулярных веществ, например в состоянии вязкотекучей жидкости, эластичном состоянии, такие как каучук, силикон, другие эластомеры, твердых пластмасс.

Типы переработки полимеров в изделия

Несмотря на то, что в повседневной жизни термин «переработка пластмасс» используется в значении сбора и вторичного производства изделий из уже использованного пластика, на самом деле у термина несколько другой смысл. Переработкой полимеров называют получение готовых изделий из синтезированных ранее полимеров, в том числе первичных.

Переработка полимеров, как правило происходит при высоких температурах от 150 до 500 градусов Цельсия в зависимости от природы конкретного полимера. Исключение составляют некоторые термореактивные пластики, например двухкомпонентные разновидности эпоксидных смол или пенополиуретана, которые реагируют при комнатной температуре. При переработке в полимер могут вводить разные добавки (в случае, например, не применяющегося в качестве чистого вещества ПВХ, добавки практически обязательны) для лучшей перерабатываемости, придания пластмассе нужных свойств или удешевления продукта. Наиболее употребляемыми аддитивами (добавками для полимеров) являются , например, наполнители, красители, стабилизаторы, пластификаторы, модификаторы, нуклеаторы и т.д.

Классификация полимеров по областям применения

Полимеры, главным образом, термопласты подразделяют по степени роста технических и эксплуатационных характеристик. Основной характеристикой полимера при этом является температура долговременной эксплуатации. В данном случае полимеры с известными допущениями и довольно большими разночтениями у разных авторов разделяют на три категории:

  • General purpose plastics или полимеры общего (общетехнического) назначения;
  • Engineering plastics или конструкционные пластики (полимеры инженерно-технического назначения);
  • Super-engineering plastics или суперконструкционные полимеры.

Также всё более важную роль в современной индустрии полимеров играет класс эластомеров или термоэластопластов (TPE, ТПЭ). По своим свойствам и методам переработки в изделия эти материалы аналогичны термопластам, при этом по внешнему виду и эксплуатационным свойствам близки к резине и каучуку. ТПЭ в быту повсеместно путают с резиной из-за способности этих материалов к значительным обратимым деформациям.

Также полимеры и их марки классифицируют по наиболее подходящему способу переработки – литьевые, экструзионные, пресс-порошки и т.п.

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Производство полимерных изделий

Чаще всего из полимерного материала изготавливают изделия повседневного быта. Их применение достаточно разнообразно – контейнеры для хранения пищи, жидкостей, разнообразные упаковки, формы для бетона и др. Направление выбирается в зависимости от наличия и мощности соответствующего оборудования, на котором будут производиться полимерные изделия.

С чего начать

Главная задача любого бизнесмена – выбор ассортимента предлагаемой продукции и поиск клиентов. По оценкам специалистов самые популярные изделия из полимерных материалов – посуда и другие емкости, контактирующие с пищевыми продуктами, упаковочная пленка для мелко- и крупногабаритных товаров.

Заключение договоров с продавцами или производителями строительных материалов, бытовой техники, хозяйственных и обычных магазинов позволит быстро наработать базу оптовых покупателей. В дальнейшем можно будет начать производство изделий под заказ. Небольшая рентабельность (около 15%) компенсируется большими объемами продаж.

Начальный этап создания бизнеса – регистрация. В зависимости от предполагаемых объемов производства можно выбрать ИП, ООО. Чтобы запустить небольшой завод полимерных изделий достаточно ИП. Однако при планировании масштабной деятельности с широким перечнем выпускаемой продукции лучше регистрировать юридическое лицо. К организациям уровень доверия выше как со стороны партнеров, так и клиентов.

Поиск помещения

Следующая задача начинающего бизнесмена – поиск и аренда подходящих помещений .Потребуется не менее 400 кв. м. Можно арендовать ангары, гаражные постройки или любые одноэтажные здания. Цеха, склады и подсобные комнаты должны удовлетворять таким требованиям – наличие коммуникаций (вентиляция, водоснабжение, возможность использования высоковольтных линий под 380В) и свободное пространство для работников в соответствии с объемом производства. Общие стандарты помещений для производства:

  1. Высота потолков от 3,5 метров.
  2. В отделке стен должны применяться негорючие материалы.
  3. Полы должны быть бетонными или отделаны плиткой.

Если производство полимерных изделий планируется в крупном городе (Москва, Санкт-Петербург), то аренда квадратного метра составляет до 5 000 руб. в год. Следовательно, в расходную часть бизнес-плана нужно заложить не менее 2000000 руб.

Закупка оборудования и материалов

Циклы производственного процесса бывают полными и неполными. От этого зависят затраты на приобретение оборудования, на котором будут выпускаться полимерные изделия.

Полный цикл предусматривает расплавление гранул, формирование пленки и создание из нее готового продукта. К обязательному оборудованию относятся:

  • гранулятор;
  • экструдер (аппарат для получения пленки из исходного сырья);
  • дробильные агрегаты.

Для дополнительной обработки полимерных изделий в России может потребоваться специальный принтер по нанесению рисунков и надписей, аппарат для загибания краев, машина для упаковки. Неполный цикл – работа с готовой пленкой. Для комплектации линий нужно будет приобрести специальные прессы для придания формы, укладочную и упаковочную машину. Приблизительные затраты на оборудование для завода выпускающего полимерные изделия с полным циклом:

Расходы на оборудование составят не менее 300 000 руб. Издержки на настройку производственной линии сюда не входят. Основное сырье для разнообразной продукции бытового назначения – пластиковые гранулы. Их получают из переработанного пластика. Приобретать собственную установку по переработке исходного сырья нерентабельно. Большинство заводов закупают готовые гранулы. Стоимость 1 тонны материала составляет около 15 000 руб.

Подбор персонала

Встречаются умельцы, способные изготавливать полимерные изделия своими руками, без посторонней помощи. Например, в гараже или подвале дома.

Однако высокий доход можно получать только при масштабном производстве. От профессионализма сотрудников зависит качество выпускаемой продукции и финансовые результаты. Работник должен иметь опыт и знать технологию производства. Для запуска линии можно ограничиться следующими вакансиями:

  • разнорабочие (2 человека с окладом от 25 000 руб.);
  • технолог (40 000–50 000 руб.);
  • специалист по управлению станками (от 35 000 руб.);
  • грузчик (20 000–30 000 руб.).

Ежемесячные расходы на выплату заработной платы составят от 150 000 руб.

Порядок организации сбыта

Полимерная пленка используется повсеместно – от упаковки товаров до создания парников и теплиц. Крупные торговые и промышленные компании всегда нуждаются в подобных материалах. С ними можно заключать контракты на оптовую поставку пленки, предлагая более выгодные условия, чем у конкурентов.

Одним из популярных направлений считается производство полимерных форм для бетона. На базе завода можно производить и полимерно-песчаные изделия (тротуарная плитка, черепица, облицовочный камень). В данном случае применяются несложные составы – полимер, песок, краситель. Такое производство решает экологическую проблему городов. В качестве сырья используются бытовые отходы (пластик, пакеты, бутылки).

Предложив администрации города план утилизации отходов, свои идеи и продукцию, можно получить хорошие заказы, сформировать положительный имидж.

Рекламная стратегия

Выбор способов продвижения продукции зависит от ассортимента. Если планируется выпуск медицинских полимерных изделий, то делать акцент на розничной торговле нет смысла. Покупателями выступают преимущественно учреждения здравоохранения.

Желательно создать собственный сайт, где будут предлагаться полимерные изделия в ассортименте. Грамотное наполнение ресурса поможет вывести компанию на первые страницы поисковых систем. Эту задачу лучше доверить профессионалам, которые создадут интересный контент, удобную систему выбора и способа оплаты.

На сайте можно проводить регулярные акции, разработать особые условия для оптовиков, указать контактные данные производства, способы доставки грузов, разместить отзывы клиентов. Неплохо работает реклама в тематических журналах (например, по строительству). Дополнительно можно давать объявления в обычных газетах и на онлайн площадках.

Изделия из полимерных материалов

В книге рассмотрены основные явления формования из расплава, включая высокоэластичную деформацию в головке; релаксацию остаточной обратимой деформации на выходе из нее и разбухание экструдата; деформирование расплава под влиянием внешних сил, формы и размеров.

Наличие: На складе
Цена: 1200 руб.
Купить Автор: Н. Н. Тихонов, М. А. Шерышев
Современные технологии и оборудование экструзии полимеров
Издательство: ЦОП Профессия
Год издания: 2019

В книге дан обзор современных технологий и оборудования экструзии полимеров, включая специальные технологии в производстве пленок, труб, компанундирования многокомпонентных пластмасс, древесно-полимерных композитов, нетканых материалов.

Наличие: На складе
Цена: 1200 руб.
Купить Автор: А.Я. Малкин
Основы реологии
Издательство: ЦОП Профессия
Год издания: 2018

Книга рассматривает теоретические основы, экспериментальные данные и области применения результатов исследований в реологии. Каждая глава включает основные понятия, конкретные примеры, раскрывающие основные проблемы и задачи, и способы их решения.

Наличие: На складе
Цена: 2400 руб.
Купить Автор: Н. Рудольф, Р. Кизель, Ш. Аумнате
Рециклинг пластмасс. Экономика, экология и технологии переработки пластмассовых отходов
Издательство: ЦОП Профессия
Год издания: 2018

Книга не имеет российских аналогов и будет востребована разработчиками, технологами, учеными и студентами в области переработки пластмасс. К преимуществам издания относятся наглядные схемы-стратегии повышения эффективности затрат путем ориентации свойств материалов для улучшения их переработки, рекомендации по оптимизации технологических процессов (сортировка, деструкция и др.) .

Наличие: На складе
Цена: 1100 руб.
Купить Автор: Ложечко Ю.П.
Литье под давлением термопластов (2-е издание)
Издательство: ЦОП Профессия
Год издания: 2018

В обновленном издании рассматриваются основы процесса литья под давлением изделий из термопластов, приведено описание 24 видов разновидностей литья. Дается описание конструкции литьевых машин, литьевых форм, добавлен раздел по периферийному оборудованию. Особое внимание уделяется выбору технологических параметров литья, их влиянию на свойства изделий, даны практические рекомендации по устранению дефектов.

Наличие: На складе
Цена: 1100 руб.
Купить Автор: Кербер М.Л. и др., под ред. академика А.А. Берлина
Полимерные композиционные материалы: структура, свойства, технология (5-е издание, исправленное и дополненное)
Издательство: ЦОП Профессия
Год издания: 2018

В обновленном 5-м издании существенно обновлен и расширен материал по методам получения изделий из ПКМ (добавлено более 100 страниц и свыше 150 иллюстраций), отражающие научно-технические достижения в этой области за последние 10 лет, а также дополнены главы по технологическим свойствам и применению ПКМ в технике.

Наличие: На складе
Цена: 1400 руб.
Купить Автор: Шерышев М.А., Тихонов Н.Н.
Организация и проектирование предприятий переработки пластмасс (2-е издание)
Издательство: ЦОП Профессия
Год издания: 2018

В обновленном издании отражены наиболее важные моменты организации предприятий, специализирующихся на производстве изделий и деталей из пластических масс. Подробно раскрыты особенности проведения проектных работ, принципы организации проектирования.

Наличие: На складе
Цена: 1300 руб.
Купить Автор: Крайнов М. С.
Экономика производств по переработке пластмасс. Технико-экономический анализ и калькулирование себестоимости продукции практическое руководство
Издательство: ЦОП Профессия
Год издания: 2018

В практическом руководстве рассмотрены ключевые вопросы технико-экономического анализа производств по переработке пластмасс – формирование расхода основных и вспомогательных материалов; нормирование труда основного, вспомогательного и складского персонала; дан анализ эффективности использования технологического оборудования и прессформ.

Наличие: На складе
Цена: 1200 руб.
Купить Автор: Шерышев М.А., Шерышев А.Е.
Термоформование. Материалы, технологии, оборудование
Издательство: ЦОП Профессия
Год издания: 2018

В книге дана классификация материалов и всех методов термоформования из них. Описаны свойства исходных полимерных материалов и их влияние на качество готовых изделий. Рассказано об основных методах производства листов и пленок, а также о влиянии этих методов на качество отформованных изделий.

Наличие: На складе
Цена: 1200 руб.
Купить Автор: Марк Ф. Зонненшайн
Полиуретаны. Состав, свойства, производство, применение
Издательство: ЦОП Профессия
Год издания: 2018

В ключевой книге по полиуретанам на основе последних научных разработок, экспериментальных данных и внедренных патентов раскрываются химизм и синтез ПУР, включая анализ свойств основных компонентов, добавок, реагентов и катализаторов, методы получения и технологии, анализ структуры и конечных свойств ПУР.

Наличие: На складе
Цена: 1700 руб.
Купить Автор: В. П. Володин
Экструзия профильных изделий. Материалы, оборудование и особенности технологий
Издательство: ЦОП Профессия
Год издания: 2018

В книге приведены основные сведения о материалах для производства профильных изделиий, включая их эксплуатационные характеристики и свойства. Описаны технологические схемы экструзии профильных изделий различными методами: многоручьевая экструзия, соэкструзия и др. Подробно рассмотреноn технологическое (экструдеры, шнеки, оснастка) и вспомогательное оборудование, его производительность и компановка.

Наличие: На складе
Цена: 1800 руб.
Купить Автор: Мэллой Р. Перевод с англ. (Plastic Part Design for Injection Molding)
Конструирование пластмассовых изделий для литья под давлением
Издательство: ЦОП Профессия
Год издания: 2006

Издание посвящено основным вопросам и способам конструирования изделий из полимерных материалов. Так же рассмотрены проблемы выбора материалов, быстрого прототипирования, экспериментального анализа напряжений и сборки изделий.

Наличие: На складе
Цена: 1600 руб.
Купить Автор: Комаров Г.В.
Соединения деталей из полимерных материалов
Издательство: ЦОП Профессия
Год издания: 2006

В издании рассмотрены основные способы соединения деталей из полимерных материалов на заключительной стадии производства изделий и узлов. Справочник носит практический характер и содержит большое количество информации, ранее труднодоступной.

Наличие: На складе
Цена: 1500 руб.
Купить Автор: Гольдберг И.Е.
Пути оптимизации литьевой оснастки: Ее величество литьевая форма
Издательство: Научные основы и технологии
Год издания: 2009

В книге показаны пути и приемы создания литьевой оснастки. На большом количестве примеров автор показывает, как выбираются, совершенствуются, и создаются заново конструкции всех функциональных систем формы.

Наличие: На складе
Цена: 1250 руб.
Купить Автор: Шиллер М., пер. с англ., под ред. Н.Н. Тихонова
(PVC Additives. Performance, Chemistry, Developments, and Sustainability)
Добавки к ПВХ. Состав, свойства, применение
Издательство: ЦОП Профессия
Год издания: 2017

В книге приведена классификация добавок к ПВХ по назначению и применению. Детально рассмотрены стабилизаторы (металлические и неметаллические) и системы стабилизации на их основе, включая вопросы деструкции, термостабилизации, составления рецептур и испытаний. Подробно описаны характеристики пластификаторов, процессинговых добавок, оксида титана, смазок, мелонаполнителей, вспенивателей и др.

Наличие: На складе
Цена: 1700 руб.
Купить Автор: К.Колгрюбер, пер. с англ. (2007, Co-Rotating Twin-Screw Extruder) под ред. В. Б. Узденского
Двухшнековые сонаправленные экструдеры. Основы, технология, применение
Издательство: ЦОП Профессия
Год издания: 2016

Единственная работа, полностью посвященная экструдерам с однонаправленным вращением шнеков, содержит подробные сведения об оборудовании такого типа. Приведены основные характеристики экструдеров и шнеков, особенности конструкции, поведение материала, тех

Наличие: На складе
Цена: 2000 руб.
Купить Автор: Цвайфель Х., Маер Р.Д., Шиллер М. пер.6-го англ.изд. (Plastics Additives Handbook) под ред. В.Б. Узденского, А.О. Григорова
Добавки к полимерам. Справочник
Издательство: ЦОП Профессия
Год издания: 2010

В справочнике представлены наиболее распространенные торговые марки добавок, а также приведены контакты их основных производителей. Издание будет полезно абсолютно всем специалистам по переработке пластмасс, так как в настоящее время ни одно производство не обходится без применения добавок. Этим справочником пользуются в Европе уже 35 лет, каждые 5 лет информация в нем обновляется, согласно последним достижениям в области разработки и применении добавок к полимерным материалам.

Наличие: На складе
Цена: 4500 руб.
Купить Автор: М.Дж. Гордон, мл.
Управление качеством литья под давлением
Издательство: Научные основы и технологии
Год издания: 2012

Полный и исчерпывающий путеводитель по управлению качеством процесса литья под давлением. Второе издание сохранило тот же простой, легкий для понимания язык, который сделал популярным первую книгу, и предлагает специалистам руководство по получению пластм

Наличие: На складе
Цена: 2000 руб.
Купить Автор: Франке Й. Пер. с англ. (Three-Dimensional Molded Interconnect Devices (3D-MID)) под ред. И.Волкова
3D-MID – материалы, технологии, свойства
Издательство: ЦОП Профессия
Год издания: 2014

В книге изложены основы проектирования, изготовления и применения 3D-MID-изделий на базе современных технологических и научных достижений. Рассмотрены важные вопросы комплексной разработки 3D-MID-изделий на основе систематического подхода, качества и надежности готовых изделий. Приведены многочисленные примеры применения изделий в различных отраслях.

Наличие: На складе
Цена: 1500 руб.
Купить Автор: Винников В. П., Генералов М. Б.
Методы получения нанодисперсных порошков
Издательство: ЦОП Профессия
Год издания: 2016

Рассмотрены основные методы получения нанодисперсных порошкообразных материалов, а также большое внимание уделено процессам и аппаратам, используемым в химической технологии наноматериалов. Показано влияние размерног

Читать еще:  Стеллажи полочные своими руками
Ссылка на основную публикацию
Adblock
detector