Для чего нужны дополнительные контакты на контакторе?
Особенности современных магнитных пускателей и их применение
Рассматривать эту тему нужно с магнитных пускателей нужно с представителей советской эпохи. Яркие представители – это ПМЛ и подобные. Пускатели применяются для коммутации мощной нагрузки управляющим сигналом с током малой величины. Управляющий сигнал подаётся на катушку, которая создаёт магнитное поле. Оно в свою очередь создаёт усилие на магнитопроводе, который механически соединен с подвижными силовыми контактами и блок-контактами.
Магнитный пускатель можно разделить на две части: верхнюю и нижнюю. В нижней части расположена катушка и неподвижная часть магнитопровода, клеммы выводов катушки.
Верхняя часть пускателя содержит в себе: набор контактов, подвижную часть магнитопровода с возвратной пружиной. Она нужна для размыкания контактов, когда на катушку не подаётся напряжение, происходит возврат контактов в нормальные положения. На многих экземплярах в ней располагается дугогасительная камера. Подробнее — в статье про устройство и принцип действия магнитных пускателей.
Общий вид старого пускателя изображен выше. Ближе к зрителю расположены силовые контакты, они пронумерованы от 1 до 6. Дальше мы видим блок-контакты, они нужны для реализаций дополнительных функций схемы и самоподхвата.
Интересно:
Контакты пускателя замкнуты только тогда, когда на катушку подаётся напряжение. Пульты управления такими приборами обычно оборудованы кнопками без фиксации, это значит, что пускатель будет включен только тогда, когда вы удерживаете кнопку в нажатом положении.
Если для некоторых схем это хорошо, например, для тельфера, лебедки и других грузоподъёмных механизмов, то для двигателей работающих в длительном режиме это никак не подойдёт, представьте схему управления насосом, который должен работать без остановки.
Можно конечно использовать кнопки с фиксацией и тумблеры, но более наглядно использовать кнопки «Старт» и «Стоп» на пульте, поэтому используется схема с самоподхватом через блок-контакты.
Почему я начал статью о современных коммутационных приборов с рассмотрения классического образца? Всё просто – они еще в огромном количестве встречаются на предприятиях, промышленных объектах и прочем. К тому же имеют очень большой запас прочности, как в плане ресурса, так и в плане работы в перегруженных режимах.
Строение современных моделей магнитных пускателей
Давайте рассмотрим не частный случай, а современные приборы в общем виде. Отдельные моменты могут отличаться и зависеть от конкретной модели или производителя, поэтому постараюсь охватить как можно больший диапазон информации.
Начнем с общего вида современного пускателя.
На лицевой части перед нами находятся 4 пары контактов. Три из них с маркировкой типа 1L1 и 2T1 – это силовые контакты для подключения нагрузки к трёхфазной электросети. Контакты с пометкой «L» служат для подключения источника питания, а «T» — для подключения потребителя.
Вообще можно подключать сеть как с верхней стороны (L), так и с нижней (T). Но соблюдение маркировки и подключения описанного в первом способе сделает цепь более наглядной и упростит её обслуживания другим электромонтерам, которые будут с ней работать кроме вас. Принято заводить питание с верхней стороны.
Пара контактов 13NO-14NO – это контакты для самоподхвата, или блок-контакты. Их назначение описано выше.
Интересно:
Главным отличием у современных контакторов является маркировка клемм, нужно запомнить, что клеммы с маркировкой «L» и «T» служат для подключения силовых линий – питания и нагрузки. Контакты с маркировкой NO и NC служат для реализации самоподхвата и других функций схем. При этом NC – нормально-закрытые (замкнутые), а NO – нормально-открытые (разомкнутые).
Нормальным состояние контактов называется такое состояние, при котором на кнопку или пускатель не оказывается внешнего воздействия, т.е. когда на кнопку НЕ нажимают, а в случае с пускателем отсутствует напряжение на катушке и он выключен.
Такие пускатели также состоят из верхней и нижней части, для разнообразия рассмотрим верхнюю часть на примере другого пускателя.
Как вы можете увидеть – все составляющие детали такие-же как и на старых отечественных экземплярах. Однако обратите внимание на желтую деталь – изоляционную траверсу, на предыдущем экземпляре она была выполнена в коричневом цвете. Во-первых, по ее положению вы можете судить о состоянии пускателя. Если она втянута – пускатель включен, а если вровень или слегка выступает над крышкой – выключен.
К тому же вы можете принудительно включить его при проблемах с цепью питания катушки. Нужно просто вдавить траверсу отверткой или чем нибудь другим. Будьте внимательны, чтобы вас не ударило током, такая коммутация мощных нагрузок, а особенно двигателей может быть опасной. При отсутствии должной квалификации это делать не рекомендуется.
Что еще нужно знать о пускателях?
При подключении пускателя внимательно уточните на какое напряжение рассчитана катушка. Дело в том, что катушки в основном встречаются на напряжение 220 и 380 вольт, об этом говорит соответствующее обозначение на его корпусе.
Контакты катушки помечены, как А1 и А2. Один из контактов катушки может дублироваться на противоположной стороне пускателя для удобства подключения и сборки схемы. Это отражено на картинке ниже, обратите внимания с этой стороны только один из концов катушки – А2.
Информация о характеристиках пускателя выглядит следующим образом.
Пускатель не может коммутировать одинаковый ток для разных типов нагрузки. На корпусе может быть наклейка или нанесены надписи с характеристиками.
АС-3 и АС-1 – это категории применения, говорят о том, что индуктивную нагрузку, такую как электродвигатель он может коммутировать на ток до 9 А, а в случае применения активной нагрузки (ТЭНов и Ламп накаливания) до 25 А. Наклейка может состоять из нескольких секторов с подобной информацией или полезными данными, например такими.
На передней панели или сбоку может быть нанесена схема с расположением контактов.
Схема контактов выполняется в таком виде. На ней подписаны названия клемм и их положение в нормальном состоянии (отключенной катушке).
Блок дополнительных контактов для магнитного пускателя, что это такое и как использовать?
У траверсы есть еще одна дополнительная функция – соединение с дополнительным контактным блоком. Обратите внимание на её внешний вид и форму, на её выступающей части есть зацепы.
Блок контактов представляет собой дополнительный модуль, который монтируется поверх пускателя.
Обычно в блоке контактов располагается 2 или 4 пары контактов. 2 пары выполнены в нормально-разомкнутом виде, а 2 пары в замкнутом. Эти контакты могут быть использованы, как для коммутации нагрузки низкой мощности, так и для реализации дополнительных функций.
Дополнительные функции и оборудование
Стоит отметить, что к пускателям кроме блока с контактами подключается и дополнительное оборудование.
Тепловая защита, дополнительные блок контакты, ограничители напряжения, реверсивная блокировка, таймер задержки пуска. На картинке вы видите дополнительную аппаратуру для пускателя производства ABB.
Каждый из производителей может выпускать другие наборы дополнительных устройств. Инженеры крупных компаний предусмотрели решения для целого ряда производственных задач, которые реализуются с использованием пускателей. Раньше это приходилось делать с использованием отдельных модулей, а это увеличивало, как количество проводов расположенных в щитке для соединения оперативных цепей и блоков, так и общее занимаемое место.
Схема подключения магнитного пускателя
Я уже сказал, что магнитный пускатель подключается обычно через кнопки без фиксации. Такие кнопки установлены в кнопочном посте. Один из распространённых вариантов, это пост типа ПКЭ, изображен на фотографии ниже.
Если нужно реализовать вращение двигателя в обоих направлениях используют пост с тремя кнопками:
«Стоп» — при этом, обычно, красного цвета.
Внутри корпуса вы обнаружите клеммы на обратной стороне кнопок, причем на каждой есть пара нормально-замкнутых и пара нормально-разомкнутых, расположены на противоположных сторонах.
Взгляните на схему, для подключения пускателя через кнопочный пост, фазный провод через нормально-замкнутую пару контактов кнопки «стоп» подключают к нормально-разомкнутой паре кнопки «пуск». От второй клеммы кнопки «пуск» провод идёт на катушку.
Катушка одним концом подключается к нулю (если она на 220 В) или к другой фазе (если катушка 380 В). А вторым к проводу от кнопки пуск. При этом параллельно кнопке пуск подключается нормально-разомкнутая пара блок-контактов с пускателя (тот самый самоподхват).
Для этого один из контактов перемычкой соединяется с выводом катушки, который соединен с кнопкой «пуск», чтобы не прокладывать лишний кабель до кнопочного поста, а второй вывод блок-контакта подключается к той клемме кнопки «пуск», что соединена с фазным проводом, от кнопки «Стоп».
Контакты «13НО-14НО» — нормально-разомкнутые пары блок контактов, на англ. это те, что NO.
К кнопочному посту прокладывается всего три провода:
От блок-контактов к фазе на «ПУСК» для самоподхвата.
Выводы
Современные пускатели хоть и отличаются внешне и определенным функционалом, однако выполняют те же задачи, что и раньше. Пускатели разных типов можно взаимозаменять, нужно предусмотреть только ток, на который рассчитана конкретная модель.
Поделитесь этой статьей с друзьями:
Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:
Вступайте в наши группы в социальных сетях:
Что такое контактор: назначение, принцип работы, виды, схемы подключения
При производстве электротехнических работ на высоковольтных линиях, при подключении мощных потребителей электрической энергии и промышленного оборудования электромонтажник неизбежно сталкивается с таким устройством, как контактор. У профессионала нет сомнений для чего нужен контактор и какие функции он выполняет, но человеку далекому от электротехники или только начинающему познавать электрическую специальность рано или поздно приходится столкнутся с этим понятием. Контактор – прибор очень удобный, но, чтобы понять для чего он нужен придется немного разобраться.
Что такое контактор и для чего он нужен
В электрических сетях постоянно приходится включать или выключать различные нагрузки или управлять их работой. Как мы знаем, в быту для этих целей существуют механические выключатели и рубильники. Но у таких устройств есть весьма ограниченный ресурс износостойкости, а для больших электрических систем, управление с помощью механических рубильников является неудобным и неэффективным способом. Именно поэтому был создан такой прибор, который имеет огромный ресурс работы, позволяет производить циклы включения и выключения до нескольких тысяч раз в час, а самое главное дает возможность управлять нагрузкой дистанционно. Простыми словами это выключатель.
Контактор – это электромагнитное устройство, предназначенное для частых включений и выключений электрических цепей дистанционным способом.
Электромагнитные контакторы применяются во всех сферах нашей жизни. Они включают уличное освещение, управляют отключением высоковольтных линий электропередачи, линий транспортных систем (трамвайных, троллейбусных, железнодорожных), широко применяются в строительстве и промышленности для запуска мощных силовых установок, двигателей, машин и другого оборудования.
Более того, такие коммутационные устройства применяются и в жилых домах для различных целей, таких, например, как включение электрообогревательных приборов или водонагревателей, для управления вентиляционными установками, водопроводными или канализационными насосами. Прогресс не стоит на месте и на данный момент системы умного дома под управлением контакторов или групп таких приборов уже постепенно входят в жизнь обычных людей.
Огромную роль эти устройства играют в электробезопасности и, как следствие, предотвращении пожаров от возгорания электрооборудования или силовых линий.
Данные приборы имеют ряд преимуществ перед различными модульными приспособлениями:
- Могут подключаться к любой сети;
- Имеют компактные размеры;
- Абсолютно бесшумны в работе;
- Могут использоваться при высоких мощностях и больших токах;
- Легкие в эксплуатации и просты в монтаже;
- Могут работать в любых условиях.
Устройство и принцип работы
Контактор – это двухпозиционный электромагнитный прибор, управление которым производится с помощью вспомогательной цепи электрического тока проходящего через катушки контактора. Во время прохождения электрического тока к сердечнику притягивается якорь, и группа контактов замыкается. В нормальном состоянии контакты в таком устройстве всегда разомкнуты – это важное правило для электробезопасности и удобства использования.
Если говорить простыми словами контактор – это выключатель при подаче напряжения на который его контакты замыкаются, и нагрузка включается, а при отсутствии напряжения на контакторе – он размыкает электрическую цепь.
Конструктивно этот электромагнитный выключатель состоит из системы блок-контактов, дугогасительной, контактной и электромагнитной систем.
Для тех, кто знаком с электрическими схемами и принципами работы выключателей данные схемы будут понятны. На катушку А1 – А2 подается вспомогательное напряжение, при этом для создания механического усилия и замыкания контактов втягивается соленоид и включает те контакты, которые необходимо. В зависимости от типа контактора и его конструкции он может включать как одну группу контактов, так и несколько одновременно или в определенной последовательности. Для того чтобы безопасно и быстро размыкать контактор в его конструкции присутствует пружина, посредством которой контакты, при отсутствии напряжения, мгновенно размыкаются.
Несмотря на то, что с виду этот прибор кажется очень сложным, а во многих случаях (при управлении силовыми линиями до 600В и токами до 1600А) большим по размерам в его конструкции все достаточно просто:
- группа контактов, выполненная из высококачественной меди;
- корпус из диэлектрических материалов;
- соединенная с электромагнитом напрямую контактная планка;
- электромагнитная катушка;
- дугогасительные элементы, которые необходимы при управлении большими токами.
Управление контактором производится с помощью вспомогательной цепи, напряжение которой должно быть ниже величины напряжения рабочего тока и может соответствовать 24, 42, 110, 220 или 380 В.
Основные виды и типы контакторов
Для выполнения различных условий работы, задач и управления разными видами электрических систем и оборудования существуют контакторы с разнообразным функционалом.
По типу электрического тока коммутирующие устройства бывают:
- постоянного тока – предназначенные для коммутации сетей постоянного тока;
- переменного тока – работающие и выполняющие свою задачу в сетях переменного тока.
По типам конструкции эти механизмы различаются по количеству полюсов. Наиболее широко применяются однополюсные и двухполюсные устройства, реже – трехполюсные .
Трехполюсные приборы применяются в трехфазных электрических сетях переменного тока для управления мощными электродвигателями и прочими устройствами. В промышленности производят и используют многополюсные контакторы, но такие механизмы используются крайне редко и выполняют специфические задачи.
По наличию дополнительных систем:
- без дугогасительной системы;
- имеющие дугогасительную систему.
Наличие дугогасительной системы, о которой было сказано выше, не является обязательным конструктивом для сетей 220 В, но обязательно применяется в устройствах и в сетях с высоким напряжением (380 В, 600 В). Такая система гасит электрическую дугу, неизменно возникающую при высоком напряжении, при помощи поперечного электромагнитного поля в специальных камерах.
По типу управления контактором:
- ручное (механическое) – оператор сам включает или отключает устройство;
- с помощью слаботочной линии – коммутация происходит дистанционно;
По типу привода коммутирующие устройства бывают электромагнитные и пневматические . Самые распространенные и эффективные – механизмы, работающие с помощью электромагнитной индукции. Пневматические в основном применяются на железнодорожном транспорте (например, в локомотивах поездов), где есть системы сжатого воздуха.
По типу монтажа применяют бескорпусные и корпусные контакторы. Первые – монтируются в электрических щитах или внутри электроустановок и не защищены от попадания влаги и пыли, а вторые могут монтироваться в любом месте и очень часто имеют хорошую влаго-, пылезащиту.
Характеристики контакторов
Для выбора правильного устройства для своих нужд, необходимо знать, какие характеристики бывают у такого типа приборов и чем они отличаются. Как правило, электромагнитные контакторы имеют следующие важные характеристики:
- Предельное и номинальное напряжение;
- Соотношение работы с различными автоматическими выключателями (защищающие от короткого замыкания);
- Параметры и типы регуляторов ускорений автоматических выключателей;
- Характеристика и тип сопротивлений;
- Тип и характер реле и расцепителей и других элементов в его составе.
В чём разница между контактором и магнитным пускателем
Очень часто контакторы путают с магнитными пускателями и это обоснованно, так как по сути это одно и то же. Данные типы устройств конструктивно выполнены практически идентично. Отличие же этих устройств в назначении: если контактор это моноблочный прибор, является выключателем и в основном служит для коммутации цепей, то электромагнитное реле (пускатель) в том числе выполняет защитную функцию, например, экстренно размыкая цепь при перегреве, и имеет в своем составе несколько контакторов, защитные устройства и управляющие элементы.
Существует такой вид коммутирующего устройства, как промежуточное реле – это прибор небольшой мощности, который служит для коммутации в слаботочных цепях и может выдержать намного больше циклов размыкания, чем контактор.
Схемы подключения контактора
Контакторы выпускаются многими производителями электротехнической продукции и имеют разные типы и исполнение. При подключении такого устройства важно строго руководствоваться рекомендациями завода-изготовителя и нормативной электротехнической документацией. В инструкции и на самом корпусе прибора в обязательном порядке будет располагаться схема подключения данного механизма и его главные характеристики. Разобраться в этой электрической схеме профессиональному электрику не составит никакого труда, а вот неспециалисту придется немного постараться.
Обратите внимание! Для работоспособности схемы используется нормально открытый контакт контактора для реализации самоподхвата расположенный параллельно пусковой кнопке.
Независимо от того каким-образом подключается контактор в системе обязательно используется два вида сети: силовая и сигнальная. Сигнальная линия запускает сам контактор, а он в свою очередь замыкает силовую линию.
При подключении к мощным асинхронным двигателям важно подключать последовательно с контактором тепловое реле, для защиты двигателя от перегрева и автомат для защиты от короткого замыкания.
Разобраться в назначении, конструкции и принципах работы данного сложного устройства оказалось совсем не сложно. Важно помнить, что правильно подключённый прибор – залог долгой и безопасной службы контактора. При подключении необходимо работать только при отключенном электропитании, помнить о мерах электробезопасности и общих правилах охраны труда, и строго их выполнять. А если что-то в работе или подключении этого прибора вам все же осталось непонятно, то лучшим вариантом будет обратиться к профессиональным электрикам для подключения данного устройства.
Модульный контактор (КМ)
Модульный контактор дает возможность дистанционно управлять электроустановками и оборудованием. Он имеет компактные размеры, отлично сочетается с другими модульными устройствами. Например, однофазный контактор легко установить на ДИН-рейку в электрическом щитке. Во время работы отсутствует вибрация и шум, поэтому такие контакторы применяются не только на производстве, но и в жилых и общественных зданиях.
Что такое модульный контактор и для чего он нужен
По своему функциональному назначению контактор модульный КМ относится к коммутационной аппаратуре дистанционного управления мощными нагрузками, работающими при постоянном или переменном токе. Они выполняют разрыв токовых цепей сразу в нескольких местах, и этим отличаются от электромагнитных реле, разрывающих цепь лишь в одной точке.
Довольно часто модульные контакторы работают совместно со вспомогательными устройствами – приставками, тепловыми реле, средствами блокировки и другими приборами модульного типа. В результате таких сочетаний получается аппаратура, обладающая особыми свойствами и способная выполнять заданные функции. Так, при установке модуля задержки, получается контактор с функцией задержки, а тепловое реле перегрузки переводит контактор в категорию магнитного пускателя. С помощью вспомогательных элементов существенно расширяются возможности основных приборов, улучшаются их эксплуатационные характеристики, упрощается монтаж.
По своей сути контакторные устройства считаются модифицированными разновидностями пускателя, в котором дополнительно присутствуют тепловое реле и контактная группа для запуска электродвигателя. Электромагнитные пускатели низкого напряжения реверсивными и нереверсивными. Первый вариант включает в себя два одинаковых контактора, с одним и тем же номинальным током. В нем установлена блокировка механического или электрического типа, предотвращающая одновременное замыкание главных контактов.
Защитные функции в этих приборах выполняют электротепловые токовые реле и другие аналогичные устройства. Электрический контактор малой мощности, используется в качестве промежуточного реле. Он предназначен для слаботочных цепей и отличается большим числом коммутаций. С помощью этого прибора удается подключить множество дополнительных участков и контролировать их включение-выключение.
Конструкция и принцип действия
Стандартная конструкция контактора включает в себя несколько основных деталей. Прибор состоит из корпуса (1), выводной клеммы катушки управления (2), клеммы силового контакта (3), неподвижного магнитопровода (4), подвижной части – сердечника (5), катушки управления (6), короткозамкнутого кольца магнитопровода (7), неподвижного и подвижного контактов (8 и 9), индикаторного рычага включения-выключения (10).
Катушка является основным элементом, создающим магнитный ток. Если она используется еще и в качестве дросселя, то с ее помощью возникает движущая сила, обеспечивающая работу приборов. Натяжение контактов фиксируется при помощи контактной пружины. Во время стыковки подвижный и неподвижный контакты соединяются между собой. Они постоянно находятся в движении и совершают определенные действия. Неподвижные контакты закрепляются на корпусе, а подвижные соединяются с сердечником.
Работа контактора происходит следующим образом:
- После подачи напряжения на управляющую катушку, происходит притягивание якоря к сердечнику. В результате, наступает замыкание или размыкание контактной группы, в соответствии с исходным положением того или иного контакта.
- После отключения питания все действия происходят в обратном порядке. Электрическая дуга, возникающая в момент размыкания, гасится при помощи дугогасительной системы.
- После прекращения подачи напряжения, электромагнитное поле исчезает и перестает удерживать якорь или сердечник.
- Возвратная пружина переводит контакты в исходное положение, полностью размыкая цепь. Таким образом, модульный контактор выполняет свою основную работу в периоды подачи и отключения напряжения.
Классификация контакторных устройств
Существуют различные типы контакторов, отличающихся друг от друга по различным показателям. Среди них можно выделить следующие параметры.
В первую очередь, они классифицируются по назначению. Сюда входят следующие виды и категории:
- Приборы для дистанционной коммутации. Большинство из них работает под ручным управлением оператора, используя кнопки или выключатели. В нужное время подается сигнал, и устройство приводится в действие. В другом способе несколько контакторов соединяются в общую автоматизированную систему питания, в которой для подачи команд используется электронная схема. На случай аварийной ситуации предусмотрена система защиты, размыкающая контакты.
- Включение мощного электрооборудования при помощи слаботочных линий. Возникает вопрос, для чего нужен контактор в таких случаях? Не лучше ли воспользоваться традиционной кнопкой? Это, конечно, можно сделать, но тогда понадобится очень массивная и громоздкая аппаратура, а сам процесс включения потребует значительных усилий. То же самое касается и выключения. Поэтому для этих целей используются компактные слаботочные устройства, позволяющие с высокой частотой выполнять циклы включения-выключения. Таким образом, слабый ток подается на катушку, а уже потом осуществляется запуск мощного электродвигателя.
Каждый контактор модульный разделяется по типу привода его в действие. В этом случае также можно отметить различные варианты:
- Электромагнитный привод считается основным, именно он заложен в принципе действия большинства устройств. При подаче напряжения происходит включение, а при отсутствии напряжения прибор отключается. После полного отключения, включение нужно выполнять повторно, что обеспечивает дополнительную безопасность при работе с электроустановками.
- Контактная группа может быть приведена в движение с помощью пневматических устройств. Такая система, предназначенная для коммутации, не требует электромагнитного привода. Управляющая команда подается импульсом высокого давления. Подобные системы применяются для локомотивов железных дорог, и других установках с пневматикой.
Любой контактор модульный КМ в зависимости от модификации, может быть смонтирован разными способами:
- Специализированные устройства, в том числе и без корпусов, не имеют каких-либо дизайнерских ограничений и устанавливаются исключительно с позиций нормальной функциональности и безопасной эксплуатации.
- Существуют конструкции, создаваемые в индивидуальном порядке под конкретную электроустановку. Они не подходят для бытовых условий, поскольку размещаются в специально отведенных местах.
- При стандартном монтаже модульный контактор и его подключение осуществляются на ДИН-рейку в щитке, вместе с другими устройствами.
Существуют различия и в соответствии с номинальным напряжением основной цепи. В этом случае контактор КМ может входить в группу устройств, работающих с напряжением 220 и 440 вольт или в группу с напряжением 380 и 660 В. Прибор, бывает однополюсный, а также двухполюсный и с большим количеством полюсов – до 5 единиц.
Схемы подключения потребителей и модульных контакторов
В соответствии с типом используемого электрооборудования, в каждом случае предусмотрена индивидуальная схема подключения модульного контактора. Наибольшее распространение получил стандартный вариант, где используется всего один прибор, а также схемы – реверсивная и с подключением однофазных потребителей. Каждую из них следует рассмотреть подробнее.
Самая популярная схема – подключение трехфазного электродвигателя через контактор модульный КМ (рис. 1). Для управления используются обычные кнопки ПУСК и СТОП. Защита от перегрузок осуществляется с помощью теплового реле. На случай коротких замыканий электрическая цепь оборудуется автоматическим выключателем.
Другая схема – реверсивная (рис. 2), используется при подключение модульного контактора к электродвигателю, чтобы появилась функция реверса. Она постоянно необходима в различных подъемных механизмах, станках и другом оборудовании. В этом случае выполняется подсоединение еще одного коммутирующего устройства. Оно участвует в изменении мест двух фаз, что приводит и к изменению направления вращения вала. Данная схема также дополнена защитными средствами – тепловым реле и автоматическим выключателем.
Основное назначение контакторов в третьей схеме, заключается в работе с однофазными потребителями. Как правило, это системы освещения, электрические насосы и другое оборудование, функционирующее с одной фазой.
Технические характеристики
Основные параметры и технические характеристики наносятся на корпус прибора, в том числе и контактора АВВ. Прежде всего, это величина номинального тока, тип и количество контактов. На каждой модели и модификации присутствуют собственные показатели.
Чаще всего коммутационные приборы, работающие с различным электрооборудованием, обладают следующими характеристиками:
- Величина номинального рабочего напряжения переменного тока, составляющая 230, 400 и 600 вольт.
- Значение номинального рабочего тока, с категорией использования АС-3 – 12 А.
- Показатели условного теплового тока с категорией использования АС-1 – 25 А.
- Номинальная мощность при коммутации для напряжения 230 В по категории АС-3 – 3 кВт.
- Номинальная мощность при коммутации для напряжения 400 В по категории АС-3 – 5,5 кВт.
- Номинальная мощность при коммутации для напряжения 660 В по категории АС-3 – 7,5 кВт.
Отдельно следует отметить характеристики управляющих цепей в самом контакторе:
- Величина номинального напряжения в управляющих катушках составляет 24, 36, 110, 230 и 400 вольт.
- При срабатывании катушка потребляет мощность в размере 60 ВА.
- В положении удержания катушка потребляет мощность, величиной 7 ВА.
- Контакты замыкаются в течение 12-22 миллисекунд.
- Размыкание контактов происходит в течение 4-16 мс.
- Катушка управления обладает мощностью рассеяния – 3 Вт.
Благодаря этим показателям данные приборы широко используются в электрике, промышленности и других областях.
Схема подключения контактора
Контактор КМИ: назначение и принцип работы
Контакторы переменного тока
Контактор как электромеханическое устройство
Контакторы, пускатели
Итак, приступим к контакторам.
Контактор – это одноступенчатый аппарат, предназначенный для частых дистанционных включений и отключений электрических силовых цепей. Замыкание контактов контактора может осуществляться электромагнитным или гидравлическим приводом. Наибольшее распространение получили электромагнитные контакторы.
То есть по сути – это своеобразный рубильник, но с автоматическим управлением, с помощью электромагнитного привода. Этот самый привод позволяет гонять контакты туда-сюда довольно часто и много раз. У контакторов выше механическая и электрическая износостойкость, они рассчитаны на количество циклов включения-отключения, исчисляемое сотнями тысяч и миллионами. Ниже на картинке (стырено с гугла) представлено схематическое изображение контактора для прояснения принципа его работы.
Номером 1 у нас обозначается неподвижный контакт, номером 2 – подвижный. Подвижный контакт закрепляется на якоре 3 электромагнита. Под номером 4 скрывается сердечник 4, на котором установлена втягивающая катушка 5. Номер 6 – это дугогасительная камера, предназначенная, как ни странно, для гашения дуги при размыкании контактов.
При подаче управляющего напряжения на катушку 5 возникает ток, создающий магнитное поле, притягивающее якорь 3, контакт 2 замыкается с контактом 1. При отключении управляющего напряжения контакт 2 пружинами отбрасывается от контакта 1. Возникшая от разрыва контактов электрическая дуга гасится в камере 6.
Однако вышеприведенный алгоритм справедлив для Нормально Разомкнутых (Н.Р. или N.O.) контактов. Для Нормально Замкнутых (Н.З. или N.C.) контактов все происходит с точностью до наоборот. В нормальном положении, когда на управляющую катушку не подано напряжение, контакты замкнуты. При подаче напряжения на катушку 5 создается магнитное поле, размыкающее контакты. При отключении напряжения контакты вновь замыкаются.
В корпусе одного контактора могут быть разные сочетания контактов: 3NO, 4NO, 2NO+2NC, 3NC+NO, 3NO+NC, 4NC. Также к контактору дополнительно пристыковываются дополнительные контакты, предназначенные для цепей управления и сигнализации. Ниже на картинке представлены контакторы – промышленный и модульный.
Клеммы А1, А2 – зажимы подключения катушки управления контактором. 1,3,5, 2,4,6 – клеммы подключения силовых контактов. 21NC, 22NC – нормально замкнутые допконтакты, 7(13), 8(14) — нормально разомкнутые допконтакты.
К клеммам силовых контактов подключается сама коммутируемая цепь, будь то электродвигатели, сети освещения и другие. Подавая напряжение на зажимы А1, А2, можно управлять включением/отключением контактора. Ну а допконтакты включаются во вторичные цепи, либо сигнализируя о положении контактора, либо непосредственно участвуя в схеме управления. При этом напряжение, подаваемое на катушку контактора, может отличаться от напряжения коммутируемой цепи. То есть силовые контакты могут быть рассчитаны на вполне нормальные переменные 380 В, то катушка может управляться от 24 В постоянного тока, либо 220 В переменного, либо 220 В, но постоянного тока. Все зависит от способа применения контактора. При выборе контактора необходимо учитывать – на какое напряжение рассчитаны его силовые контакты, и каким напряжением управляется его катушка.
Есть разные способы применения контакторов, назову лишь основные категории для контакторов переменного тока:
АС-1 – активная или слабоиндуктивная нагрузка;
АС-2 – пуск и торможение электродвигателей с фазным ротором;
АС-3 – пуск двигателей с короткозамкнутым ротором и отключение вращающегося двигателя;
АС-4 – пуск и торможение двигателей с короткозамкнутым ротором.
Как мы видим – тяжелее всего включать и отключать (а особенно тормозить) двигатели с короткозамкнутым ротором, это связано с большими бросками токов.
Есть и другие, более специфичные, категории применения, но рассматривать мы их, конечно, не будем, ввиду их меньшей распространенности.
Отдельно стоит отметить контакторы постоянного тока. Применяются они, в основном, для управления двигателями постоянного тока на электрическом транспорте и для включения и отключения электропечей сопротивления (грубо говоря, это такие большие духовки с ТЭНами). Такие контакторы крупнее габаритами, у них больше дугогасительная камера – все из-за того, что коммутировать постоянный ток куда сложнее, чем переменный (дугу на переменном токе проще разорвать). Вы наверняка слышали довольно громкие хлопки, катаясь на троллейбусе – это щелкают те самые контакторы постоянного тока.
Ниже на картинке представлены контакторы на постоянном токе (слева) и на переменном (справа) на номинальный ток 63 ампера, приведенные приблизительно к одному масштабу (извиняюсь за шакалов).
Как уже было сказано выше – в основном контакторы применяются для включения и отключения (торможения) электродвигателей. А у этих двигателей есть одна небольшая особенность – они не очень то любят работать с перегрузом и как следствие – с перегревом. Если не ошибаюсь, тот же асинхронный двигатель может работать с перегрузом до 5%, а далее его нужно отключить. Обычный автоматический выключатель не может обеспечить такой точности, к тому же – у автоматических выключателей дискретная градация по номиналам (например — 6, 10, 16, 20, 25 ампер и т.д.). В таких случаях на помощь приходит такое устройство как тепловое реле.
Тепловое реле – это электрический аппарат, предназначенный для защиты двигателей от токовой перегрузки. Принцип действия этого реле основан на разном тепловом расширении слоев биметаллической пластины (более подробно в посте про автоматы). Однако тепловое реле позволяет точно выставить значение тока, при котором оно сработает, что актуально для защиты электродвигателей. Тепловое реле приставляется к контактору, образуя, таким образом, пускатель. Ниже на картинке приведены все три элемента.
Далее приведу простейшую схему прямого пуска электродвигателя для того, чтобы объяснить принцип действия пускателя.
На данной схеме нажатием кнопки SBT подаем напряжение на катушку контактора КМ – контактор включается, дополнительный контакт КМ замыкается, а значит кнопку SBT держать нет необходимости, лампа HL сигнализирует о включении контактора КМ. С помощью кнопки SBC цепь размыкается – контактор отключается. В случае, когда ток в двигателе превысит уставку на тепловом реле КК, разомкнется нормально замкнутый контакт КК – контактор КМ отключится. Автомат SF защищает вторичные цепи от короткого замыкания в них.
Однако, в сумме получается аж 3 аппарата – автомат для защиты линии, контактор для включения и отключения двигателя и тепловое реле для защиты двигателя от перегруза. Поэтому есть еще одно решение – аппарат, в котором совмещен автомат и тепловое реле с возможностью регулирования уставки по перегрузу. Данный аппарат называется автоматом защиты двигателя.
Ниже на картинке представлены примеры данного аппарата.
Как видно на изображении, включение/отключение производится 3 способами: поворотной ручкой, либо кнопками, либо клавишей.
Также у автомата защиты двигателя есть еще некоторые особенности:
1. Высокая отключающая способность (до 50-100кА)
2. Времятоковая характеристика срабатывания автомата учитывает большие пусковые токи электродвигателей.
3. Тепловой расцепитель имеет температурную компенсацию, необходимую для того, чтобы нивелировать влияние температуры окружающей среды на биметаллическую пластину.
4. Имеют высокую по сравнению с обычными автоматами механическую и электрическую износостойкость.
На этом пока все про контакторы и пускатели, еще одно применение контакторов будет рассмотрено подробнее в посте про категории надежности электроснабжения и схемы АВР.
Назначение, устройство и работа магнитного пускателя.
11 Фев 2014г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. С этой статьи мы начнем изучение магнитного пускателя и все, что с ним связано, а идею этой темы подсказал постоянный читатель сайта Сергей Кр.
Магнитный пускатель является коммутационным аппаратом и относится к семейству электромагнитных контакторов, позволяющий коммутировать мощные нагрузки постоянного и переменного тока, и предназначен для частых включений и отключений силовых электрических цепей.
Магнитные пускатели применяются в основном для пуска, останова и реверсирования трехфазных асинхронных электродвигателей, однако, из-за своей неприхотливости они прекрасно работают в схемах дистанционного управления освещением, в схемах управления компрессорами, насосами, кран-балками, тепловыми печами, кондиционерами, ленточными конвейерами и т.д. Одним словом, у магнитного пускателя обширная область применения.
Как таковой магнитный пускатель уже трудно встретить в магазинах, так как их практически вытеснили контакторы. Причем по своим конструктивным и техническим характеристикам современный контактор ничем не отличается от магнитного пускателя, а различить их можно только по названию. Поэтому, когда будете приобретать в магазине пускатель, обязательно уточняйте, что это — магнитный пускатель или контактор.
Мы рассмотрим устройство и работу магнитного пускателя на примере контактора типа КМИ – контактор малогабаритный переменного тока общепромышленного применения.
Принцип работы магнитного пускателя.
Принцип работы очень простой: напряжение питания подается на катушку пускателя, в катушке возникает магнитное поле, за счет которого вовнутрь катушки втягивается металлический сердечник, к которому закреплена группа силовых (рабочих) контактов, контакты замыкаются, и через них начинает течь электрический ток. Управление магнитным пускателем осуществляется кнопками «Пуск», «Стоп», «Вперед» и «Назад».
Устройство магнитного пускателя.
Магнитный пускатель состоит из двух частей: сам пускатель и блок контактов.
Хотя блок контактов и не является основной частью магнитного пускателя и не всегда он используется, но если пускатель работает в схеме где должны быть задействованы дополнительные контакты этого пускателя, например, реверс электродвигателя, сигнализация работы пускателя или включение дополнительного оборудования пускателем, то для размножения контактов, как раз, и служит блок контактов или, как его еще называют — приставка контактная.
Блок контактов или приставка контактная.
Внутри блока контактов (приставки контактной) встроена подвижная контактная система, которая жестко связывается с контактной системой магнитного пускателя и стает с ним как бы одним целым. Крепится приставка в верхней части пускателя, где для этого предусмотрены специальные полозья с зацепами.
Контактная система приставки состоит из двух пар нормально замкнутых и двух пар нормально разомкнутых контактов.
Чтобы идти дальше давайте сразу разберемся: что есть нормально замкнутый и нормально разомкнутый контакты. На рисунке ниже схематично показана кнопка с парой контактов под номерами 1-2 и 3-4, которые закреплены на вертикальной оси. В правой части рисунка показано графическое изображение этих контактов, используемое на электрических принципиальных схемах.
Нормально разомкнутый (NO) контакт в нерабочем состоянии всегда разомкнут, то есть, не замкнут. На рисунке он обозначен парой 1–2, и чтобы через него прошел ток контакт необходимо замкнуть.
Нормально замкнутый (NC) контакт в нерабочем состоянии всегда замкнут и через него может проходить ток. На рисунке такой контакт обозначен парой 3–4, и чтобы прекратить прохождение тока через него, надо контакт разомкнуть.
Теперь, если нажать кнопку, то нормально разомкнутый контакт 1-2 замкнется, а нормально замкнутый 3-4 разомкнется. О чем показывает рисунок ниже.
Вернемся к блоку контактов.
В исходном состоянии, когда магнитный пускатель обесточен, нормально разомкнутые контакты 53NO–54NO и 83NO–84NO разомкнуты, а нормально замкнутые 61NC–62NC и 71NC–72NC замкнуты. Об этом говорит шильдик с номерами клемм контактов, расположенный на боковой стенке блока контактов, а стрелка показывает направление движения контактной группы.
Теперь, если на катушку пускателя подать напряжение питания, то сердечник потянет за собой контакты блока контактов и нормально разомкнутые замкнутся, а нормально замкнутые разомкнутся.
Фиксируется блок контактов на пускателе специальной защелкой. А чтобы блок снять, достаточно приподнять защелку и выдвигать блок в сторону защелки.
Магнитный пускатель.
Магнитный пускатель состоит как бы из верхней и нижней части.
В верхней части находится подвижная контактная система, дугогасительная камера и подвижная половинка электромагнита, которая механически связана с группой силовых контактов подвижной контактной системы.
Нижняя часть пускателя состоит из катушки, возвратной пружины и второй половинки электромагнита. Возвратная пружина возвращает верхнюю половинку в исходное положение после прекращения подачи питания на катушку, тем самым, разрывая силовые контакты пускателя.
Обе половинки электромагнита набраны из Ш-образных пластин, сделанных из электромагнитной стали. Это наглядно видно, если вытащить нижнюю половинку электромагнита.
Катушка пускателя намотана медным проводом, и содержит N-ое количество витков, рассчитанное на подключение определенного питающего напряжения равного 24, 36, 110, 220 или 380 Вольт.
Ну и как происходит сам процесс.
При подаче напряжения питания в катушке возникает магнитное поле и обе половинки стремятся соединиться, образуя замкнутый контур. Как только отключаем питание, магнитное поле пропадает, и верхняя часть возвращается возвратной пружиной в исходное положение.
Теперь осталось разобраться с питанием и характеристиками.
На боковой стенке пускателя, так же, как и у блока контактов, нанесена информация об электрических параметрах пускателя и для удобства условно разделена на три сектора:
Сектор №1.
В первом секторе дана общая информация о пускателе и его область применения:
50Гц – номинальная частота переменного тока, при которой возможна бесперебойная работа пускателя;
Категория применения АС-3 – двигатели с короткозамкнутым ротором: пуск, отключение без предварительной остановки.
Например: этот пускатель можно использовать для запуска и останова асинхронных двигателей с короткозамкнутым ротором, используемых в лифтах, эскалаторах, ленточных конвейерах, элеваторах, компрессорах, насосах, кондиционерах и т.д.
Для характеристики коммутационной способности контакторов и пускателей переменного тока установлены четыре категории применения, являющиеся стандартными: АС1, АС2, АС3, АС4. Каждая категория применения характеризуется значениями токов, напряжений, коэффициентов мощности или постоянных времени, условиями испытаний и других параметров установленных ГОСТ Р 50030.4.1-2002.
Iе 9А – номинальный рабочий ток. Это ток нагрузки, который в нормальном режиме работы может проходить через силовые контакты пускателя. В нашем примере этот ток составляет 9 Ампер.
Категория применения АС-1 – неиндуктивные или слабо индуктивные нагрузки, печи, сопротивления. Например: лампы накаливания, ТЭНы.
Ith 25A – условный тепловой ток (t° ≤ 40°). Это максимальный ток, который контактор или пускатель может проводить в 8-часовом режиме так, чтобы превышение температуры его различных частей не выходило за пределы 40°С.
Сектор №2.
В этом секторе указана номинальная мощность нагрузки, которую могут коммутировать силовые контакты пускателя, и которая характеризуется категорией применения АС3 и измеряется в кВт (киловатт). Например, через контакты пускателя можно пропустить нагрузку мощностью 2,2 кВт, питающуюся переменным напряжением не более 230 Вольт.
Сектор №3.
Здесь показана электрическая схема пускателя: катушка и четыре пары нормально разомкнутых контактов – три силовых (рабочих) и один вспомогательный. От катушки через все контакты проходит пунктирная линия, которая указывает, что все четыре контакта замыкаются и размыкаются одновременно.
Напряжение питания 220В подается на катушку через контакты, обозначенные как А1 и А2.
Современные магнитные пускатели выпускают с двумя однотипными контактами от одного вывода катушки. Их выводят с противоположных сторон, маркируют одинаковым буквенным и цифровым значением, и соединяют между собой проволочной перемычкой. В нашем случае это выводы с маркировкой А2. Все это сделано для удобства монтажа схемы. И если придется собирать схемы с участием магнитного пускателя, используйте оба эти контакта.
Теперь осталось рассмотреть контактную группу пускателя. Здесь все просто.
Силовыми контактами являются три пары: 1L1–2T1; 3L2–4T2; 5L3–6T3 — к ним подключается нагрузка, которую Вы хотите запитывать через магнитный пускатель или контактор. Причем контакты 1L1; 3L2; 5L3 являются входящими – к ним подводится напряжение питания, а 2Т1; 4Т2; 6Т3 являются выходящими – к ним подключается нагрузка. Хотя разницы здесь нет — что куда, но это считается за правило, чтобы можно было разобраться в монтаже другому человеку, не производившему монтаж.
Последняя пара контактов 13НО–14НО является вспомогательной и эту пару используют для реализации в схеме самоподхвата пускателя. То есть, эта пара нужна, чтобы при включении в работу, например, двигателя, все время его работы не пришлось держать нажатой кнопку «Пуск». О самоподхвате мы поговорим в следующей части.
Ну и последнее, на что хотел обратить Ваше внимание, это на то, что современные пускатели, автоматические выключатели и УЗО теперь можно размещать в одном ящике и на одну дин рейку. Так что учитывайте это при выборе ящика.
Теперь я думаю Вам понятно назначение, устройство и работа магнитного пускателя, а во второй части мы рассмотрим схемы подключения магнитного пускателя.
А пока досвидания.
Удачи!