Что такое потенциал в электричестве?
Iddc.ru

Все об электрике

Что такое потенциал в электричестве?

Электрический потенциал

Электрический потенциал – это скалярная физическая величина, характеризующая напряжённость поля. Через параметр также выражается электрическое напряжение.

Физический смысл электрического поля

Учёные давно ломают голову над субстанциями электрического и магнитного полей, но пока сие для них загадка, как и гравитация. существование не оспаривается, но суть неясна. Не секрет электричество люди знали задолго до нашей эры, а к изучению не стремились.

Главные достижения по изучению электричества случились бы минимум на 20 лет раньше, нежели в действительности. До Эрстеда влияние провода с током на магнитную стрелку отмечал Джованни Доменико Романьози в 1802 году. Это подтверждённые официальными изданиями данные, а собственно событие, возможно, произошло раньше. Заслуга Эрстеда лишь в заострении внимания общественности на замеченном факте.

Подобных примеров тьма. Порой учёные вне зависимости друг от друга делали открытия, изобретения. Встречались случаи, когда муж науки думал, что его измышления не новы. Потом удивлялся, когда оказывалось, что авторство теперь принадлежит постороннему человеку, хотя собственное открытие случилось раньше по времени. Замалчивание гарантировало переход доли известности к описавшему событие. Так происходило в XIX веке – учёные постоянно сотрудничали, что-то обсуждали, порой тяжело найти концы. К примеру, Фарадея упрекали за плагиат конструкции первого человеческого двигателя, а Википедия приписала ему авторство катушки индуктивности, придуманной Лапласом, на которое Майкл не претендовал. Впрочем, когда речь заходит о материи полей, учёные хранят дружное молчание. Единственным исключением стал Никола Тесла, утверждавший, что все во Вселенной состоит из гармонических колебаний.

Итак, учёные не знают о поле ничего, а электрический потенциал это характеристика поля. Субстанцию никто не видел, долго не могли зарегистрировать и с трудом представляют поныне! Не верите – попробуйте нарисовать в воображении электромагнитную волну:

  1. Известно, что колебание представляет суперпозицию электрического и магнитного полей, изменяющихся во времени.
  2. Вектор напряжённости магнитный перпендикулярен вектору электрическому, связаны через константу среды (некая физическая величина).
  3. На вид это две перпендикулярные волны… стоп! Что такое волна?

Так выглядит современная физика. Никто точно не знает, как выглядят поле, колебание, волна, как это нарисовать. Понятно лишь: картинки из учебника слабо описывают происходящее. Дело усугубляется неспособностью человека видеть и чувствовать электромагнитное излучение. Колебание не выглядит синусоидальным, рассматривается для одной точки, линии, фронта и пр. Это, скорее, уплотнение и растяжение эфира, нечто напоминающее трёхмерную неописуемую фигуру.

Длинное предисловие свидетельствует, насколько неизведанным остаётся то, что используется в повседневной жизни. И порой таит реальную опасность для человека. К примеру, доказано, что излучение СВЧ печи постепенно «портит» пищу. Человек, регулярно питающийся из микроволновки, рискует получить в собственное распоряжение обширный список недугов. В первую очередь – болезни крови. Небезопасна для людей и сетевая частота 50 Гц.

Характеристики электрического поля

Человек быстро понял, что электрическое поле есть, уже в XVIII веке – либо раньше – нарисована опилками его картина. Люди увидели линии, выходившие из полюсов. По аналогии стали пытаться изобразить электрическое поле. К примеру, Шарль Кулон на исходе восемнадцатого столетия открыл закон притяжения и отталкивания зарядов. Записав формулу, понял, что эквипотенциальные линии силы взаимодействия концентрически расходятся вокруг точечного скопления электричества, а траектории движения – прямолинейны.

Так оказалась изображена первая картина электрического поля. Напоминает картину, как исследователи представляли магнитное, но с гигантской разницей: в природе нашлись заряды обоих знаков. Линии напряжённости уходят в бесконечность (в теории, безусловно, закончатся). А магнитные заряды поодиночке не найдены, линии их всегда замыкаются в видимой области пространства.

Первая картина электрического поля

В остальном нашлось много общего, к примеру, заряды одинакового знака отталкиваются, а разных – притягиваются. Это справедливо для магнитов и электричества. Гильберт заметил, что магнетизм – сильная субстанция, которую сложно экранировать или уничтожить, а электричество легко разрушается влагой и прочими веществами. Дёгтя в бочку добавил Кулон, который, следуя Бенджамину Франклину, присвоил электронам отрицательный заряд. Хотя речь шла о количестве флюида. И избыток электронов следовало назвать положительным.

Как результат, линии напряжённости поля располагаются в направлении обратном правильному. Потенциал растёт не туда… Главными характеристиками электрического поля считаются:

  1. Напряжённость – показывает, какая сила действует на положительный единичный заряд в данной точке со стороны поля.
  2. Потенциал – показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку.
  3. Напряжение – разность потенциалов между двумя точками. Напряжение определяется исключительно относительно некоторого уровня.

Наиболее вероятно происхождение терминов из латинского языка. Напряжённость ввёл в обиход, предположительно, Алессандро Вольта, а потенциал называется по наименованию типа поля, которое указанной величиной характеризуется: работа по перемещению заряда не зависит от траектории, равна разнице потенциалов начальной и конечной точки. Следовательно, на замкнутой траектории равна нулю.

Нулевой потенциал и потенциальное поле

Электрическое поле считается потенциальным, значит, работа по перемещению в нем заряда не зависит от траектории и определяется единственно потенциалом. Потенциал – универсальное физическое понятие, часто применяемое. К примеру, для гравитационного поля Земли, происхождение которого поныне необъяснимо. Известно, что массы притягиваются по закону, напоминающему выведенный Шарлем Кулоном.

Зарисовка напряжённости поля

В электрическом поле Земной шар становится началом отсчёта. Нет разницы, относительно чего исчислять потенциал, но люди быстро поняли, что смоляное электричество бьётся, стеклянное кусается током, а грунт не причиняет вреда. Следовательно, в полном соответствии с логикой принят за нуль. В этом плюс: Земля громадная по объёму, на планету стекают без труда гигантские токи, статические и переменные. Доказано, что на теле заряд пытается распределиться взаимно на максимальной дистанции. Что соответствует поверхности планеты. При таком раскладе плотность заряда получается несущественной, много меньше, чем на любом наэлектризованном теле.

На Земле потенциал за редким исключением измеряется относительно грунта, значение называют электрическим напряжением. Из контекста становится понятно, что напряжение бывает положительным и отрицательным. Впрочем, не всегда. На ЛЭП порой считается выгодным использовать схемы с изолированной нейтралью. Тогда потенциал любой точки не считается относительно Земли, отсутствует нейтраль. Это становится возможным в трёхфазных цепях.

На местной подстанции ставят разделительный трансформатор, нейтраль вторичной обмотки которого заземляют, чтобы поставлять потребителям фазное напряжение 220 В, а не линейное. Порой люди наивно думают, что планета единая, следовательно, не нужна нейтраль, ток всё равно потечёт. Но потечёт через грунт, вызывая немалый экономический ущерб и представляя опасность для людей созданием шагового напряжения. Медный нулевой проводник – называли в первой половине XIX века возвратным – имеет малое сопротивление и гарантированно не причинит вреда.

Читать еще:  Как подключить терморегулятор к инфракрасному обогревателю?

В цепях с изолированной нейтралью потенциал не отсчитывается относительно уровня грунта, а напряжение измеряется между двумя точками. Уместно упомянуть, что по закону Ома ток, протекая через проводник, создаёт разность потенциалов. Поэтому нельзя браться при аварии за контур заземления. Малое сопротивление способно оказаться причиной образования здесь немалой разницы потенциалов. А человек обязан помнить об опасности напряжения прикосновения.

Однако цепи с изолированной нейтралью используются и в целях безопасности. Если напряжение создаётся между двумя точками вторичной обмотки разделительного трансформатора, ток на землю через неосторожно взявшегося за оголённый провод человека не пойдёт – разница потенциалов относительно грунта меньше. Следовательно, разделительный трансформатор становится мерой защиты и часто используется на практике.

Падение потенциала во внешней электрической цепи

Внешней электрической цепью называется участок, находящийся за пределами источника. На практике ЭДС вырабатывается на вторичных обмотках трёхфазного трансформатора подстанции, считаясь источником. Начиная с вывода, идёт внешняя цепь.

На ней потенциал падает от фазного напряжения до нейтрали. Речь идёт о рядовых потребителях. Когда в дом приходит электричество, это неизменно система трёхфазного тока. Нейтраль глухо заземлена, чтобы обеспечить нужный уровень безопасности. Жилой дом не гарантирует равномерную загрузку всех фаз, через нейтраль потечёт ток. Если цепь использовать для защиты, не возникает полной гарантии безопасности: путь тока способен пролечь через человека, неожиданно взявшегося за заземлитель.

Следовательно, нужно обеспечить два нулевых проводника: рабочий и защитный. Через первый производится зануление металлических частей объекта, через второй – заземление. Причём за рубежом принято делить две ветви на две разные линии, а в РФ они объединяются в районе контура заземления. Первое сделано для надёжной защиты, второе – для возможности работы в здании трёхфазного оборудования (вдруг пригодится!). Если в промышленной установке оставить лишь заземление корпуса, это плохо окончится для неудачника, попавшего под электрический потенциал.

Следовательно, западная система хороша для однофазного оборудования. Но за счёт унифицированности система РФ сложнее. Импортное оборудование плохо сочетается с российскими условиями: фильтры питания рассчитаны так, чтобы защитный и рабочий нулевые проводники не пересекались. Причина в электрическом потенциале:

  1. На защитном проводнике всегда потенциал грунта – нуль.
  2. На рабочем допустимо иное значение за счёт падения напряжения на проводах линии электроснабжения.

Чтобы выровнять разницу, линии на входе в здание объединяют и заводят на контур громоотвода. Что для импортной техники не становится идеальным решением, предприятия-поставщики электроэнергии несут потери. Это известная система TN-C-S, применяющаяся в РФ. Дома, возведенные ещё в СССР, понемногу переоборудуются.

Электрический потенциал

Из курса Механики известно, что потенциальная энергия тела связана с работой силы, например, подъем груза в гравитационном поле увеличивает его потенциальную энергию.

Поскольку, в электрическом поле на заряды также действуют силы, понятие потенциальной энергии будет справедливо и для электрических полей, при этом изменение потенциальной энергии электрического поля является движущей силой электрического тока, и называется напряжением.

Предположим, что в электрическом поле плоского конденсатора положительно заряженный одиночный заряд движется по направлению к положительной пластине, как показано на рисунке ниже.

На одиночный заряд со стороны положительной пластины будет действовать отталкивающая сила, а со стороны отрицательной – притягивающая. Определим изменение потенциальной энергии одиночного положительного заряда при его перемещении между пластинами конденсатора, против сил, действующих в противоположном направлении.

Работа, выполняемая одиночным зарядом, будет равна:

  • F – сила, действующая на заряд;
  • s – перемещение заряда.
  • q – величина заряда;
  • E – напряженность электрического поля.

Данная величина работы будет равна увеличению потенциальной энергии заряда ΔW:

Электрическое поле в физике характеризуется его напряженностью – силой, действующей со стороны поля на точечный заряд в 1 Кл.

Изменение потенциальной энергии электрического поля между двумя точками описывается электрическим напряжением или разностью потенциалов.

Разность потенциалов определяется, как отношение работы электрического поля при переносе электрического заряда из одной точки в другую к его величине.

Поскольку, A = qEs, т.е., работа равна изменению потенциальной энергии заряда при перемещении на расстояние s от отрицательной пластины, поэтому, электрический потенциал в месте нахождения электрического заряда будет равен:

Электрический потенциал точечного заряда

Определить потенциал точечного заряда Q будет сложнее, поскольку его электрическое поле не такое постоянное, как в конденсаторе, и зависит от расстояния до течечного объекта:

  • F – сила, действующая на пробный заряд;
  • Q – заряд точечного объекта;
  • q – заряд пробного объекта, помещенного в электрическое поле объекта Q;
  • r – расстояние между точечным зарядом Q и пробным зарядом q;
  • k=8,99·10 9 Н·м 2 /Кл 2

Напряженность электрического поля в любой точке вокруг точечного заряда определяется по формуле:

Изменение электрического потенциала пробного заряда равно выполненной работе, деленной на величину пробного заряда:

  • U – разность потенциалов;
  • A – работа.

Чем больше расстояние r, тем ниже потенциал (при r=∞ U=0).

Электрический потенциал, как и электрическое поле можно представить графически в виде эквипотенциальных поверхностей (поверхности с одинаковым потенциалом). Поскольку, величина потенциала точечного заряда зависит от расстояния, то эквипотенциальными поверхностями точечного заряда являются сферы, в центре которых находится точечный заряд. Соответственно эквипотенциальными поверхностями плоского конденсатора будут плоскости, расположенные параллельно пластинам конденсатора.

Емкость конденсатора

Выше уже было сказано, что на пластинах конденсатора хранятся противоположные по знаку электрические заряды, которые притягиваются друг к другу, но не могут соединиться. А сколько зарядов может находиться на пластинах конкретного конденсатора, говоря другими словами, каков заряд конденсатора?

Заряд конденсатора определяется его емкостью, и связан с напряжением между пластинами следующей формулой:

  • q – заряд пластин конденсатора;
  • C – емкость конденсатора;
  • U – напряжение между пластинами конденсатора.

Для плоского конденсатора напряженность его электрического поля определяется по формуле:

  • A – площадь пластины конденсатора;
  • ε – электрическая постоянная

Поскольку, для плоского конденсатора U=Es, то U=(qs)/(εA).

Подставив в формулу значение заряда q=CU, получаем формулу емкости конденсатора (измеряется в Фарадах):

В реальных конденсаторах, которые применяются в электрических схемах приборов и устройств, пластины конденсатора разделены не воздухом, а диэлектриком (веществом, которое плохо проводит электричество). Применение диэлектрика дает возможность инженерам конструировать малогабаритные конденсаторы достаточно большой емкости, чего простой воздух делать не позволяет.

Читать еще:  Пятна на паркете. Как вывести пятно с паркета

Емкость конденсатора увеличивается пропорционально диэлектрической проницаемости диэлектрика ε:

Проведя несложные расчеты, можно вывести формулу для определения энергии конденсатора:

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Потенциал. Разность потенциалов. Напряжение.Эквипотенциальные поверхности

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

– энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

– следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением.

Из доказанного выше:

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности: Напряженность поля равна1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

Эквипотенциальные поверхности.

ЭПП – поверхности равного потенциала.

– работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

– вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Потенциальная энергия взаимодействия зарядов.

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

Потенциал электрического поля

Потенциальность поля

Важным свойством электрического поля, как поля не имеющего вихрей и созданного одними неподвижными источниками, является его потенциальность.

Электрическое поле называется потенциальным, если работа, которую совершает носитель заряда в таком поле, при перемещении его по любому замкнутому контуру равняется нулю.

Гравитационное поле силы тяжести также является потенциальным. Если поднять груз определенной массы на некоторую высоту, а затем опустить его обратно на поверхность Земли, в прежнюю точку, то полная механическая работа будет также равна нулю. Причем, совершенно не важно по какой траектории осуществлялся подъем и спуск груза. Источником такого гравитационного поля является в этом примере Земля (тело с массой во много раз большей чем масса поднимаемого груза).

Электростатическое поле, то есть такое поле, которое образовано неподвижными электрическими зарядами, также обладает аналогичной потенциальностью. Работа носителя заряда при его перемещении по замкнутому контуру в электростатическом поле будет равняться нулю. Траектория такого перемещения замкнута и называется контуром и эта траектория может быть любого вида, принципиальное значение имеет ее замкнутость, а не форма.

На рисунке изображены разные траектории движения заряда в электростатическом поле плоского конденсатора. Не имеет значения по какому маршруту двигался заряд (картинка слева), совершенная им работа будет одинаковой, то есть A1=A2=A3. На правом изображении показано движение заряда по замкнутому контуру. Начальная и конечная точки поля совпадают. Заряд двигался из точки 1, затем 2, 3, и снова прибыл в точку 1, тем самым образовав замкнутую траекторию, то есть контур. В этом случае говорят, что совершенная им механическая работа равна нулю.

Потенциал

Так как электростатическое поле является потенциальным, то в нем каждая точка пространства имеет потенциал характеризующий это поле. Для гравитационного поля это будет гравитационный потенциал, а для электрического — электрический потенциал. Что же такое потенциал и как он определяется?

Потенциалом φ точки электрического поля называется работа, которую нужно затратить, чтобы переместить заряд +q в количестве одного Кулона из бесконечности в данную точку поля, или же работа по перемещению этого же заряда +q из данной точки в бесконечность.

Из определения потенциала получается, что потенциал — это показатель характеризующий работу заряда, то есть это по-сути энергетическая характеристика поля. Что же следует понимать под бесконечностью? Это всё-таки некоторое расстояние, а не математическое понятие ∞. Под бесконечностью в определении потенциала следует понимать такое расстояние в пространстве, на котором поле можно считать равным нулю, то есть напряженность поля в ней настолько мала, что ее можно принять за ноль. Силовые линии электрического поля одиночного заряда уходят в бесконечность и даже в этой бесконечности с противоположной стороны вполне может встретится заряд противоположного знака, и тогда эти две бесконечности встретятся. Вот такое место встречи и есть то место, где влияние поля одиночного заряда равно нулю. Это место нулевого потенциала, где потенциал φ=0, после перехода этой зоны нулевого потенциала его значения поменяют свой знак. В реальной природе, во вселенной, каждый заряд имеет свою противоположную пару и потому точка бесконечности — это точка равновесия, баланса.

Из практических соображений бывает удобно принять некоторую линию или поверхность (эквипотенциальную) равной нулю. Это значит, что относительно некоторого источника электрического поля она всё же имеет некоторое значение, но принимается за ноль из практической необходимости. Получается обоснованная относительная система отсчета потенциалов поля. На этот счёт есть аналогия с гравитационным полем Земли (отсчет от уровня моря), когда влияние гравитации Солнца несущественно, но для высоких орбит космических спутников следует учитывать и гравитацию Солнца. При значительном приближении космического аппарата к Луне, влияние гравитационного потенциала Луны станет первостепенным и потребуется лунная система отсчета. Подобным образом обстоят дела и с электрическим полем Земли. Если в физике при рассмотрении теоретических вопросов выбирают бесконечность, то в электротехнике поступают иначе, и принимают за нулевой потенциал поверхность Земли. Соответственно на определенной высоте от поверхности Земли, в атмосфере, потенциал будет иметь некоторое отличное от нуля значение.

Читать еще:  Бетонная площадка: инструкция по обустройству

В каком случае понятие потенциала теряет смысл? Если при движении заряда по разным траекториям будет совершатся разная работа, то есть она будет зависеть от формы пути, то здесь потенциал поля не имеет смысла. Итак, понятие потенциала относится только к потенциальному полю.

Потенциальная энергия

Известное в механике понятие потенциальной энергии также относится к потенциальному полю. При отсутствии потенциального поля не может быть никакой речи о потенциальной энергии. Потенциальной энергией тела мы как раз и называем ту работу, которую необходимо затратить, чтобы переместить это тело из бесконечности в данную точку. Иначе говоря, требуется затратить энергию, чтобы перенести тело из области с нулевым потенциалом в область с высоким потенциалом. Опять же, если затрачиваемая работа зависит от формы пути, то нет потенциального поля, а значит невозможно говорить о потенциальной энергии.

Как было уже сказано выше, потенциал — это энергетическая характеристика поля и потому достаточно легко определить потенциальную энергию через потенциал.

Потенциальная энергия Up равна произведению заряда q на потенциал φ.

III. Основы электродинамики

Тестирование онлайн

Работа электростатического поля

Рассмотрим ситуацию: заряд q попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.


Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Потенциал

Система “заряд – электростатическое поле” или “заряд – заряд” обладает потенциальной энергией, подобно тому, как система “гравитационное поле – тело” обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал – это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело – наоборот.

Потенциальная энергия поля – это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Эту формулу можно представить в ином виде

Эквипотенциальная поверхность (линия) – поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ – точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком “минус”. Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак “+”, работа имеет знак “-“.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Зависимость напряженности и потенциала от расстояния

Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен

Напряжение в природе

Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В.
Напряжение в телефонных сетях может достигать 60 В.
Электрический угорь способен создавать напряжение до 650 В.

Энергия взаимодействия зарядов*

Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1

Аналогично Тогда энергия взаимодействия двух точечных зарядов

Ссылка на основную публикацию
Adblock
detector