Что такое дроссель и для чего он нужен?
Iddc.ru

Все об электрике

Что такое дроссель и для чего он нужен?

Электрический дроссель – принцип работы и примеры использования

Катушку индуктивности, используемую для подавления помех, для сглаживания пульсаций тока, для накопления энергии в магнитном поле катушки или сердечника, для развязки частей схемы друг от друга по высокой частоте – называют дросселем или реактором (от нем. drosseln — ограничивать, глушить).

Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.

Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, – данное положение прямо следует из Правила Ленца.

Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.

Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением. Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.

В радиотехнике, в электротехнике, в СВЧ-технике, – используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон – до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.

Итак, дроссель — катушка самоиндукции, применяемая в качестве большого индуктивного сопротивления для тех или иных переменных токов.

В том случае, если дроссель должен представлять большое индуктивное сопротивление токам низкой частоты, он должен обладать большой индуктивностью, и в этом случае он делается со стальным сердечником. Дроссель высокой частоты (представляющий большое сопротивление токам высокой частоты) делается обычно без сердечника.

Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.

Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.

Одна из широчайших сфер применения дросселей — это высокочастотные схемы . Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.

Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.

Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки . Единица измерения данного параметра — генри, а обозначение – Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).

Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, – крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.

Итак, по назначению электрические дроссели подразделяются на:

Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.

Дроссели для пуска двигателей – ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).

Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.

Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.

В то время в цепях питания вакуумных дуговых ламп применялись дроссельные усилители – это были специальные усилители, в котором анодными нагрузкамиламп служили дроссели.

Выделяющееся на дросселе Др усиленное переменное напряжение подавалось на сетку следующей лампы через разделительный конденсатор С. Вследствие того, что индуктивное сопротивление дросселя растет с частотой, дроссельный усилитель не мог давать сколько-нибудь равномерного усиления в широкой полосе частот и применялся только в тех случаях, когда нужно усиливать сравнительно узкую полосу частот и большой равномерности усиления в этой полосе не требовалось.

Arti73rus › Блог › Устройство и принцип работы дроссельной заслонки

Устройство и принцип работы дроссельной заслонки

Дроссельная заслонка — это одна из важнейших частей системы впуска двигателя внутреннего сгорания. В автомобиле она расположена между впускным коллектором и воздушным фильтром. В дизельных двигателях дроссель не нужен, однако, его все равно устанавливают на современных моторах на случай аварийной работы. Аналогичная ситуация и с бензиновыми двигателями при наличии в них системы управления подъемом клапанов. Основная функция дроссельной заслонки — подача и регулирование потока воздуха, необходимого для образования топливовоздушной смеси. Таким образом, от корректной работы заслонки зависит стабильность режимов работы двигателя, уровень расхода топлива и характеристики автомобиля в целом.

Устройство дросселя
С практической стороны дроссельная заслонка является перепускным клапаном. В открытом положении давление в системе впуска равно атмосферному. По мере закрытия оно уменьшается, приближаясь к значению вакуума (это происходит, поскольку двигатель фактически работает как насос). Именно по этой причине вакуумный усилитель тормозов соединен с впускным коллектором. Конструктивно сама заслонка является пластиной круглой формы, способной поворачиваться на 90 градусов. Один такой оборот представляет собой цикл от полного открытия и до закрытия клапана.

Виды и режимы работы дроссельной заслонки
Тип привода дросселя определяет ее конструкцию, режим работы и управление. Он может быть механический или электрический (электронный).

Устройство механического привода

Старые и бюджетные модели автомобилей имеют механический привод клапана, в котором педаль газа напрямую соединена с перепускным клапаном при помощи специального троса. Состоит механический привод для дроссельной заслонки из следующих элементов:
— акселератор (педаль газа);
— тяги и поворотные рычаги;
— стальной трос.

Нажатие на педаль газа приводит в движение механическую систему из рычагов, тяг и троса, что заставляет заслонку совершить поворот (раскрытие). В результате в систему начинает поступать воздух и формируется топливовоздушная смесь. Чем больше воздуха будет подано, тем больше поступит топлива и, соответственно, увеличится скорость. Когда акселератор находится в неактивном положении, заслонка возвращается в закрытое состояние. Помимо основного режима, механические системы могут включать и ручное управление положением дросселя при помощи специальной ручки.

Принцип работы электронного привода

Второй и более современный тип заслонок — электронный дроссель (с электрическим приводом и электронным управлением). Его приоритетными отличиями являются:
— Отсутствие прямого механического взаимодействия между педалью и заслонкой. Вместо нее, используется электронное управление, что также позволяет изменять крутящий момент двигателя без необходимости нажатия на педаль.
— Холостой ход двигателя регулируется перемещением дросселя автоматически.

Электронная система включает в себя:
— датчики положения педали газа и дроссельной заслонки;
— электронный блок управления двигателем (ЭБУ);
— электрический привод.

Система управления электронной дроссельной заслонкой также принимает во внимание сигналы от коробки передач, системы управления климатом, датчика положения педали тормоза, круиз-контроля.
При нажатии на акселератор датчик положения педали газа, состоящий из двух независимых потенциометров, изменяет сопротивление в цепи, что является сигналом для электронного блока управления. Последний передает соответствующую команду на электропривод (моторчик) и поворачивает клапан дроссельной заслонки. Ее положение, в свою очередь, контролируется соответствующими датчиками. Они посылают ответную информацию о новой позиции клапана в ЭБУ. Датчик текущего положения дроссельной заслонки представляет собой потенциометр с разнонаправленными сигналами и общим сопротивлением 8 кОм. Он располагается на ее корпусе и реагирует на вращение оси, преобразуя угол открытия клапана в напряжение постоянного тока.
В закрытом положении клапана напряжение будет около 0,7В, а в полностью открытом около 4В. Этот сигнал получает контроллер, узнавая таким образом о проценте открытия дроссельной заслонки. Исходя из этого, рассчитывается количество подаваемого топлива.

Читать еще:  Ремонт бачка унитаза своими руками

Обслуживание и ремонт дросселя
При неисправности дросселя его модуль полностью меняется, но в некоторых случаях достаточно сделать корректировку (адаптацию) или чистку. Так, для более точной работы систем с электрическим приводом необходимо проводить адаптацию или обучение дроссельной заслонки. Такая процедура предполагает занесение в память контроллера данных о крайних положениях клапана (открытия и закрытия). В обязательном порядке адаптация для дроссельной заслонки проводится в следующих случаях:
— При замене или перенастройке электронного блока управления двигателя автомобиля.
— При замене заслонки.
— Если отмечается нестабильная работа двигателя в режиме холостого хода.

Проводится обучение блока дроссельной заслонки на СТО при помощи специального оборудования (сканеров). Непрофессиональное вмешательство может привести к некорректной адаптации и ухудшению эксплуатационных характеристик автомобиля. Если проблемы возникают на стороне датчика, на приборной панели загорается лампочка, уведомляющая о неполадках. Это может свидетельствовать как о неправильной настройке, так и об обрыве контактов. Еще одной частой неисправностью является подсос воздуха, который можно диагностировать по резкому увеличению оборотов двигателя.
Несмотря на простоту конструкции, диагностику и ремонт дроссельного клапана лучше всего доверить опытному специалисту. Это обеспечит экономную, комфортную, а главное, безопасную эксплуатацию автомобиля и повысит срок службы двигателя.

Что такое дроссель и для чего он нужен?

Конструкция и принцип работы

Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:

Внешний вид изделия может быть таким, как на фото:

Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.

Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике. Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление. Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.

Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.

Интересное пояснение по данному вопросу вы также можете просмотреть на видео:

Область применения

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.

Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:

Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь. В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение. Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.

В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.

Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.

В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.

В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.

С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.

Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.

Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!

Будет интересно прочитать:

Дроссели в электрике: что это и где используются?

Чтобы зажечь лампу, натриевую или люминесцентную, необходимо выровнять ток. При включении в сеть лампы, для выполнения этой функции используется дроссель. Он является в данном случае пускорегулирующей аппаратурой. Это устройство необходимо чтобы лампа загорелась. Без данного элемента лампа не может быть запущена. Лампа в обычном режиме может разогреваться на протяжении пяти минут, а иногда и больше. Пусковой ток, которые выдает дроссель может быть значительно больше рабочего напряжения.

Вообще есть два типа дросселей – с одной и двумя обмотками. Однообмоточный также называется ДНаТ. В статье будут рассмотрены все аспекты работы дросселей, как они действуют и какие функции выполняет. В заключении читатель найдет интересный материал на данную тему и видеоролик, который поможет детальнее разобраться в работе дросселей.

Дроссель ДНаТ разновидности и способы подключения

Для того, чтобы обеспечить зажигание и выравнивание тока натриевых ламп, как высокого, так и низкого давления, при включении осветительных приборов в сеть, применяется дроссель днат, к которым относятся пускорегулирующая аппаратура и балласты.Это основные устройства, без которых применение натриевых ламп является не то, чтобы нецелесообразным, а попросту бессмысленным. Помимо пускорегулирующего аппарата, необходимо приобрести также импульсное зажигающее устройство, сокращенно ИЗУ, которое позволяет разогреть лампу, при этом используется импульс, который позволяет получить разряд в газовой смеси.

Читать еще:  Оформление лестницы своими руками

В настоящее время двухобмоточные дроссели считаются морально устаревшими, поэтому применяются достаточно редко. Пускорегулирующий аппарат можно приобрети как отечественного производства, так и зарубежного, данное утверждение касается и импульсного зажигающего устройства. Главное условие, заключается в том, что мощность дросселя и ИЗУ должна соответствовать мощности натриевой лампы.

Отметим тот факт, что импульсное зажигающее устройство (ИЗУ) может быть двух видов. К первому виду относятся ИЗУ двухпроводные, ко второму виду относятся ИЗУ с тремя проводами. Соответственно, трех проводные устройства надежнее, но при этом цена на них дороже, поэтому вопрос упирается в экономическую целесообразность приобретения изделия. Следующим термином, который относится к такому понятию, как дроссель днат, является балласт. Балластом принято называть пускорегулирующий аппарат и импульсное запускающее устройство, которые имеют металлический корпус.

Существуют и открытые пра. Вопрос выбора открытого или закрытого устройства, зависит от предпочтений отдельно взятого электрика. К достоинства пра в металлическом корпусе отнесем более низкую рабочую температуру, гарантии производителя относительно сборки изделия, и более простую схему монтажа в осветительных приборах. Остановимся на схеме подключения днат. Итак, основное условие, это соответствие мощности дросселя, мощности лампы. Например, если у вас дроссель днат 600, то и натриевая лампа должна быть 600. Правило простое, но если его не соблюдать, то период эксплуатации осветительного прибора значительно снизится, и светоотдача упадет до критической отметки.

Причем, для соединений необходимо применять медный провод, моножильный или многожильный, сечением 0,75х1,5, хотя также вопрос на любителя, можно взять провод и большего сечения, так сказать, с запасом. Уделите внимание вопросу приобретения сетевого шнура, он также должен выдерживать большие нагрузки, сечение должно быть порядка 1,5 – 2,5 мм, даже если дроссель для днат 150. Примерные параметры дросселей приведены в таблице ниже.

Следующий момент, на который обращаем внимание, это необходимость установки предохранителя. Многие будут утверждать, что это лишняя трата денег, но это высказывание не соответствует истине. Предохранитель, как верный страж, спасет при пробое балласта, когда возможны различные неприятности, которые могут закончиться либо взрывом лампы, пожаром или банальным выбиванием пробок, если у вас не прикручены жучки. Автомат лучше всего приобретать двухполюсной, так более удобно, чтобы не заморачиваться, как необходимо вставить вилку в розетку.

Причем к выбору автоматов необходимо подойти со всей степенью серьезности. Как, впрочем, и к покупке других деталей, таких как дроссель днат 250, пускорегулирующая аппаратура или импульсное зажигающее устройство. Поэтому, необходимо покупать комплектующие исключительно в торговых точках, которые не занимаются продажей бракованного неликвида.

При этом лучше переплатить и купить нормальный автомат или дроссель, чем недоплатить и купить ПРА для ДНаТ произведенное китайской промышленностью. Чтобы потом не получилось, как в русской пословице: скупой платит дважды. Схемы подключения всех обозначенных в статье устройств, в каждом конкретном случае разные, поэтому необходимо воспользоваться услугами профессионального электрика, который выполнит работу качественно.

Потери в обмотках

Существуют два принципиально разных вида потерь в дросселях: потери в сердечнике и потери в обмотках. Первые обусловлены вихревыми токами внутри самого сердечника и магнитными свойствами материала — потерями на перемагничивание, отображаемыми в виде петли гистерезиса. Причина потерь в обмотках — это сопротивление самих проводов, обычно медных.

Дроссели, используемые в импульсных силовых приборах, подвержены воздействию ВЧ-пульсаций тока, что может привести к существенному росту эффективного сопротивления обмотки и связанных с ним потерь в медных проводниках. Сопротивление обмотки силовых дросселей включает в себя две составляющие: сопротивление постоянному и переменному току, возникающее в результате действия скин-эффекта и эффекта близости.

Изменение тока в проводе индуцирует магнитный поток, который, в свою очередь, приводит к снижению тока в центральной части провода до очень малых величин. Это ведет к уменьшению эффективного поперечного сечения проводника и увеличению его сопротивления с ростом частоты. Поэтому чем выше частота и ток, тем больше потери мощности. На рабочих частотах той цепи, в которую включен дроссель, сопротивление переменному току может становиться очень большим, часто намного превышающим сопротивление по постоянному току, что ведет к существенному росту потерь в медных проводниках.

Кроме того, в силовых дросселях, оснащенных сердечниками с зазором, магнитное поле в зоне воздушного промежутка создает сильный локальный эффект близости, способный значительно увеличить сопротивление медных проводников по переменному току, а, значит, привести к росту соответствующих потерь и даже выходу дросселя из строя. Все описанные явления влияют на величину потерь мощности в любом электромагнитном устройстве. Взаимосвязь этих явлений значительно усложняет процесс разработки дросселей. Например, один из распространенных способов уменьшения сопротивления по переменному току — применение литцендрата. Однако при этом значительно снижается поперечное сечение проводника, что ведет к резкому росту сопротивления постоянному току.

Рассмотрим другой пример. Для снижения потерь в обмотках при работе в режимах высоких постоянных токов часто применяются дроссели с обмотками из фольги, позволяющие эффективно использовать пространство внутри сердечника. Однако появление даже очень небольшого переменного тока может привести к возникновению в таких обмотках существенных потерь. Все это неприемлемо для большинства современных силовых систем. Многие преобразователи постоянного тока требуют использования дросселей, способных работать в режиме пульсирующих токов с большой постоянной составляющей.

Даже при условии того, что переменная составляющая тока будет всегда намного меньше постоянной составляющей, сопротивление переменному току может стать на порядок больше сопротивления постоянному току. Проблема становится все более острой по мере того, как в современных установках повышается плотность тока и рабочая частота. К счастью, уже найдены способы снижения потерь по переменному току в медных проводниках.

Однако порошковые сердечники, как правило, характеризуются гораздо большими потерями на перемагничивание, чем ферритовые. Поэтому в силовых установках с высоким уровнем пульсаций тока иногда все же предпочитают использовать сердечники с зазором — из-за меньших потерь в них. Или же применяют порошковые сердечники из материала со сравнительно высокой магнитной проницаемостью и зазором, что позволяет использовать преимущества и того, и другого подхода. Но в этих случаях приходится решать проблемы, связанные с краевыми эффектами в зазорах, а также с потерями в медных проводниках, которые могут быть весьма значительными.

Обмотки из литцендрата

Другая работа, проведенная West Coast Magnetics совместно с Thayer School of Engineering, позволила найти способы решения ряда проблем, связанных с применением обмоток из литцендрата в силовых дросселях с сердечниками с зазором. Дело в том, что поле в зоне зазора бывает довольно сильным, что может привести к возникновению локальных потерь в части обмотки, расположенной близко к нему. Было показано, что для заданной геометрии сердечника и каркаса существует оптимальное соотношение параметров обмотки из литцендрата и ее расположения внутри каркаса, позволяющее минимизировать потери в обмотке.

  • ширина и высота окна внутри сердечника;
  • ширина и высота окна каркаса дросселя;
  • амплитуда и частота пульсаций тока;
  • длина зазора;
  • коэффициент заполнения каркаса;
  • диаметр жил литцендрата;
  • длина витка;
  • количество витков.

Используя эти данные, программа рассчитывает напряженность поля внутри каркаса, а также идеальное расположение в нем обмотки. Кроме того, программа определяет суммарные потери в обмотке и выбирает количество жил, требуемое для заполнения доступного внутреннего пространства. Для примера рассмотрим дроссель индуктивностью 10,6 мкГн, работающий на частоте 250 кГц со среднеквадратичным значением пульсаций тока 4 А.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер. Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

Читать еще:  Устанавливаем ворота с калиткой

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону – резистор на 0.25 Вт. Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими. Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока. Недостаток – выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации. Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления. Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление).

Пример использования индуктивного сопротивление – это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников. А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны – нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Заключение

Более подробно о том, что такое дроссель и зачем он нужен, можно узнать прочитав статью дроссели. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Что такое дроссель

Дроссель – это катушка индуктивности, которая обладает большим сопротивлением по отношению к переменному току. В схеме постоянного тока дроссель оказывает гораздо меньшее сопротивление. Название электрического компонента имеет немецкое происхождение – Drossel, что означает сглаживание, торможение.

Конструкция

Принципиальная схема дросселя представляет собой намотанный провод на ферромагнитный сердечник. Отсюда становится понятно, что такое дроссель. Электроэлемент напоминает трансформатор, но имеет одну обмотку.

Принцип работы

Принцип работы электрического дросселя заключается в сдерживании резкого нарастания тока и сглаживании линии падения напряжения. Как работает электрический дроссель, видно на примере люминесцентного светильника. Чтобы газ в колбе не сгорел, а постепенно разогревался, катушка постепенно доводит ток до номинального значения.

Входящий ток «тратит» свою силу на индукцию магнитного поля вокруг катушки. Когда магнитный поток достигнет своего максимума, ток начнёт проходить беспрепятственно через катушку.

Важно! Дроссели встречаются во всех электрических схемах. Сглаживание первоначального электрического напряжения защищает радио,- и электрические компоненты от критических перегрузок.

Устройство индуктивной катушки

Прибор подавляет происходящие в переменном токе пульсации. В электрических цепях проходит электричество разной частоты, поэтому для подавления помех применяют низкочастотные и высокочастотные катушки.

Низкочастотные устройства

Катушки имеют большие размеры. Провод в них намотан вокруг сердечника из трансформаторной стали. В аппаратуре, питание которой обеспечивается мощным напряжением, устанавливают дроссельные блоки низкой частоты. Индуктивные катушки в каскадном исполнении противостоят резким изменениям характеристик тока.

Что такое электрическое дросселирование, знает каждый электрик. На промышленных предприятиях без этого не обходится ни одно электрооборудование.

Высокочастотные элементы

Высокочастотный электронный дроссель гораздо меньше низкочастотного собрата. Катушка может быть выполнена из однослойной или многослойной намотки. Для высокочастотных дросселей применяют ферритовые сердечники или стержни из магнитного диэлектрического материала.

Область применения

Катушки индуктивности используют, как:

  • токоограничители;
  • катушки насыщения;
  • фильтры сглаживания;
  • магнитные усилители (МУ);
  • резонансные контуры;
  • электронный дроссель в радио,- и компьютерных схемах.

Токоограничители

Для чего нужны дроссели в качестве токоограничителей, можно узнать из следующего списка:

  1. Катушки без сердечников имеют маленькое сопротивление, поэтому они эффективно ограничивают величину тока короткого замыкания. Даже малейшее уменьшение мощности дуги короткого замыкания имеет большое значение.
  2. Во время пуска мощных электродвигателей включаются в работу катушки индуктивности. После набора максимальных оборотов аппаратом катушка отключается пусковым устройством.
  3. В лампах дневного света электрические дроссели препятствуют резкому включению тока максимальной величины. В результате происходит постепенный разогрев ртути и переход её в парообразное состояние. У ламп ДРЛ 250 дроссели находятся внутри колбы. Дроссели ламп ДНАТ находятся внутри кожуха отдельно от колбы.

Обратите внимание! Аббревиатура ДРЛ означает Дуговая Ртутная Лампа. ДНАТ – Дуговая Натриевая Трубка.

Катушки насыщения

После насыщения магнитного поля величина сопротивления катушки перестаёт расти. Ранее катушки насыщения составляли основу стабилизаторов напряжения. Сегодня их заменили электронные системы.

Фильтры сглаживания

Что это такое в электронике дроссель? Это фильтры сглаживания, которые выпрямляют линию пульсации переменного напряжения. В результате обеспечивается стабильность работы электронной аппаратуры. Такой фильтр выглядит в виде бочонка на USB-кабеле. Внутри него находится одновитковая катушка. В электронных платах используют дроссели марки r68.

Магнитные усилители (МУ)

Они были включены в систему управления электромоторов. Магнитная индукция в сердечнике насыщалась намагничиванием стали сердечника. В пускателе использовалось сразу несколько обмоток. Сегодня вместо магнитных пускателей применяют тиристорные системы.

Резонансные контуры

Резонансную схему применяют в тюнерах. Индуктивная катушка параллельно с конденсатором объединена в единую систему, что составляет резонансный контур. Схема обеспечивает малое сопротивление с фиксированной частотой.

Электронный дроссель в радио,- и компьютерных схемах

Катушки индуктивности типа r68 применяют в монтажных платах с целью выделения токов определённой частоты. Также они исполняют роль защиты, как от внешних, так и внутренних помех частей схемы.

Основные характеристики

К основным характеристикам относятся следующие показатели:

  • величина индукции;
  • потеря сопротивления;
  • потери сердечника;
  • потери из-за вихревых токов;
  • паразитная ёмкость;
  • ТКИ (температурный коэффициент индуктивности).

Дополнительная информация. Характеристики катушек индуктивности нужны для расчёта новых моделей устройств. Параметры также используются при проектировании печатных плат.

Разновидности дросселей

Их различают по назначению и способу установки. Однофазные катушки индуктивности используют в лампах дневного света, питающихся от сети 220 в. Трёхфазные устройства работают в схемах питания напряжением 380 вольт для дуговых ртутных ламп и дуговых натриевых трубок.

Встраиваемые модели монтируют в корпусе прибора. В этом случае устройства защищены от пыли и влаги. В закрытом виде устройства помещены в специальных коробах.

Электронные аналоги

На смену индукционным катушкам в их традиционном исполнении пришли полупроводниковые радиодетали: транзисторы, тиристоры.

Следует заметить. Для высокочастотных приборов транзисторы не используют.

Маркировка малогабаритных устройств

Устройства для электронных плат имеют размеры не более 2-3 см. Нанести читаемую маркировку в цифровом или буквенном обозначении практически невозможно. Для этого применяют цветовую маркировку электронных дросселей. Дроссели на схемах изображают в виде спирали с параллельной чертой.

На цилиндрический корпус радиодетали наносят несколько цветных колец. Первые две полосы (слева направо) означают величину индуктивности, измеряемую в мГенри. Третья полоса указывает множитель, на который нужно умножить число индуктивности. Четвёртое кольцо выражает допустимое отклонение в % от номинала. Если его не окажется на корпусе детали, то принято считать допуск в пределах 20%.

Например, цвета колец расположились в следующем порядке: коричневый, жёлтый, оранжевый и серебристый. Это означает величину индуктивности 14 mH, где допуск отклонения составляет 10%.

Технический прогресс не стоит на месте. С каждым годом появляются новые аналоги устаревших моделей. Разработка новых технологий во всех сферах деятельности человека требует совершенствования радиодеталей, в том числе дросселей.

Видео

Ссылка на основную публикацию
Adblock
detector