Что такое проводники, полупроводники и диэлектрики
Iddc.ru

Все об электрике

Что такое проводники, полупроводники и диэлектрики

Что такое проводники, полупроводники и диэлектрики

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

Проектируем электрику вместе

Проводники и диэлектрики. Полупроводники

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.

Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.

Проводники

Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.

Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.

Все проводники обладают такими свойствами, как сопротивление и проводимость. Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R).
Величина, обратная сопротивлению, называется проводимостью (G).

G = 1/ R

То есть, проводимостьэто свойство или способность проводника проводить электрический ток.
Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость. Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет б о льшую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.

Диэлектрики

В отличие от проводников, в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

К диэлектрикам относятся, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.

Предметы, изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.

О применении проводников и изоляторов

Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.

К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.

Нужно отметить, что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.
Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка).
Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение.
Вольфрам и молибден, напротив, являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.

Изоляторы также есть очень хорошие, просто хорошие и плохие. Связано это с тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.

Читать еще:  Марки алюминиевых проводов и кабелей и области их применения

Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.

Существуют вещества, которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками. Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.

В отличие от металлических проводников, у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет с увеличением температуры, а сопротивление, как величина обратная проводимости – уменьшается.

При низких температурах сопротивление полупроводников, как видно из рис. 1 , стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника.

Рис. 1 . Зависимость сопротивлений проводников и полупроводников от температуры

Примерами классических полупроводников являются такие химические элементы, как кремний (Si) и германий (Ge). Более подробно об этих элементах читайте в статье «О проводимости полупроводников».

Статьи по теме: 1. Что такое электрический ток?
2. Постоянный и переменный ток
3. Взаимодействие электрических зарядов. Закон Кулона
4. Направление электрического тока
5. О скорости распространения электрического тока
6. Электрический ток в жидкостях
7. Проводимость в газах
8. Электрический ток в вакууме
9. О проводимости полупроводников

Внимание!
Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Сайт посвящен основам электротехники и электричества с акцентом на домашние электрические установки и процессы, в них происходящие.

Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Физика – рефераты, конспекты, шпаргалки, лекции, семинары

Проводники, диэлектрики, полупроводники

Все вещества состоят из атомов и молекул, имеющих положительно заряженные ядра и отрицательно заряженные электроны. Атомы и молекулы электрически нейтральны, так как заряд ядра равен суммарному заряду

электронов, окружающих ядро. При наличии внешних факторов (повышение температуры, электрическое поле и т.д.) атом или молекула теряет электрон. Этот атом превращается в положительный ион, а электрон, оторвавшийся от атома, может присоединиться к другому атому, превратив его в отрицательный ион, остаться свободным. Процесс образования ионов называют ионизацией. Количество свободных электронов или ионов в единице объема вещества называется концентрацией заряженных частиц. Таким образом, в веществе, которую поместили в электрическое поле, под действием сил поля возникает процесс движения свободных электронов или ионов в направлении сил поля, назвали электрическим током.

Свойство вещества проводить ток под действием электрического поля называется электропроводностью вещества, которая зависит от концентрации свободных электрически заряженных частиц. Чем больше концентрация заряженных частиц, тем больше электропроводность вещества. Все вещества в зависимости от электропроводности делятся на:

1 Проводник. Обладают очень большой электропроводностью. Проводники делятся на две группы. К проводникам первой группе относятся металлы (медь, алюминий, серебро и т.д.) и их сплавы, в которых возможно перемещение только электронов. То есть в металлах электроны очень слабо связаны с ядрами атомов и легко от них отделяются. В металлах явление электрического тока связано с движением свободных электронов, которые обладают очень большой подвижностью и находятся в состоянии теплового движения. Эту электропроводность называют электронной. Проводники используются для изготовления проводов, ЛЭП, обмоток электрических машин и т.п.. К проводникам второй группе относятся водные растворы солей, кислот и т.д., которые называют электролитами. Под действием раствора молекулы вещества распадаются на положительные и отрицательные ионы, которые под действием электрического поля начнут перемещаться. Ионы электролита при прохождении тока начнут осаждатися на электродах, опущенных в электролит. Процесс выделения вещества из электролитов электрическим током называется электролизом. Его используют для добычи цветных металлов из растворов их соединений (медь, алюминий), а также для покрытия металлов защитным слоем другого металла (например, хромирование).

2 Диэлектрики (или электроизоляционные вещества). Вещества с очень малой электропроводностью (газы, резиновые вещества, минеральные масла и т.п.). В этих веществах электроны очень сильно связаны с ядрами атомов и под действием электрического поля редко отделяются от ядер. Т.е. диэлектрики не проводят электрический ток. Это их свойство используют при производстве электрозащитных средств: диэлектрические перчатки, обувь, коврики, изолирующие подставки, накладки, колпаки, изоляторы на электрооборудовании и т.п..

Диэлектрики могут быть: твердые, газообразные, жидкости.

3 Полупроводниковые (германий, селен, кремний). Это вещества, которые кроме электронной проводимости, имеют «дырочную» проводимость, которая в большой степени зависит от наличия внешних факторов: света, температуры, электрического или магнитного поля. Эти вещества имеют ковалентную связь (- это химическая связь между двумя электронами соседних атомов на одной орбите). Ковалентная связь очень непрочен. При наличии внешнего фактора он разрушается и появляются свободные электроны (электронная проводимость). В момент образования свободного электрона в ковалентной связи появляется свободный город – «электрона дыра» (эквивалентная протона), которая притягивает к себе электрон из соседнего ковалентной связи. Но тогда образуется новая «дыра», которая вновь притягивает к себе электрон из соседнего ковалентной связи и так далее. Т.е. под действием электрического поля перемещаются «дыры» в направлении поля (навстречу электронам) – движение протонов. Таким образом, при электронной проводимости – электрон проходит весь путь, а при «дырочной» – электроны поочередно замещаются по связям, каждый электрон проходит долю пути. При нарушении связей в полупроводниках одновременно возникает одинаковое количество электронов и «дырок». То есть, проводимость состоит из электронной и «дырочной» и называется собственной проводимостью полупроводника. Свойства полупроводников возможно изменить, если в них внести примеси других веществ. Тем самым увеличить ту или иную проводимость. Это используется в промышленной электронике: диоды, транзисторы, тиристоры. Используют, как усилители, выпрямители, электронные генераторы, стабилизаторы и тому подобное. Их преимущества: малая потеря энергии, стоимость, размер и масса, простота эксплуатации, большой срок работы. Недостаток: зависимость проводимости от температуры.

Типы твердых тел: проводники, диэлектрики, полупроводники

В зависимости от ширины запрещенной зоны, характера заполнения электронами валентной зоны и величины электропроводности все твердые тела делятся на три класса:

  1. Проводники, в которых запрещенная зона отсутствует (DE = 0), а электропроводность колеблется в пределах 10 6 -10 4 Ом -1 · см -1 ;
  2. Диэлектрики (изоляторы), для которых ширина запрещенной зоны составляет DE> 4,0 эВ, а электрическая проводимость — 10 -10 -10 -12 Ом -1 · см -1 ;
  3. Полупроводники , в которых ширина запрещенной зоны составляет DE = 1,5-2,0 эВ, а электрическая проводимость — 10 4 -10 -10 Ом -1 · см -1 .

Проводники

Проводники имеют частично заполненную валентную зону, которая перекрывается с зоной проводимости. Это приводит к способности валентных электронов свободно перемещаться в кристалле или направлено двигаться под действием внешнего поля. Отсутствие запрещенной зоны у металлов объясняется тем, что в их кристаллах s- и p-зоны перекрываются, а количество валентных электронов чрезвычайно мало по сравнению с числом свободных орбиталей в валентной зоне.

Спаренные электроны валентной зоны могут свободно переходить с нижних энергетических уровней на свободные уровни, в том числе и на свободные уровни зоны проводимости. Это обеспечивает высокую электропроводность металлов. Наибольшую электропроводность, с точки зрения зонной теории, имеют металлы, в которых количество электронов в валентной зоне равно числу электронных уровней в зоне проводимости. При этом условии все электроны могут переходить в квазисвободное состояние и участвовать в переносе электричества. К металлам с высокой электропроводностью принадлежат щелочные металлы (Li, Na, K), d-металлы I группы (Cu, Ag, Au), а также металлы II группы (Mg, Ca, Sr, Zn, Cd, Hg), в которых наблюдается перекрытие валентной зоны и зоны проводимости.

Читать еще:  Выбираем кабель для электропроводки — 5 важных нюансов

Диэлектрики

Диэлектрики имеют полностью заполненную валентную зону и большую ширину запрещенной зоны. Электроны валентной зоны, даже при сильном возбуждении атомов (нагрев, облучение и т.д.), не способны преодолеть запрещенную зону и перейти в зону проводимости.

К диэлектрикам относятся твердые вещества с ковалентной (алмаз, кварц) или ионным типом связи (оксиды MgO, Al2 O3 , TiO2 , соли NaCl, CaF2 и т.д.). Для ионных кристаллов ширина запрещенной зоны превышает DE> 6 эВ. В молекулярных кристаллах энергетические уровни локализованы в пределах молекул и энергетические зоны не возникают, поэтому такие вещества — диэлектрики.

Полупроводники

Полупроводники по своей удельной проводимости занимают промежуточное положение между проводниками и диэлектриками. От проводников они отличаются повышенной зависимостью электропроводности от содержания примесей, от действия различных видов излучения и от температуры: вблизи абсолютного нуля (0 К) полупроводники приобретают свойства диэлектрика, а при росте температуры их электрическая проводимость усиливается. От диэлектриков полупроводники отличаются значительно меньшей шириной запрещенной зоны и меньшей величиной энергии, необходимой для отрыва электрона от атома (1,7 · 10 -19 Дж / моль против 11,2 · 10 -19 Дж / моль).

Возникновение электропроводности в полупроводниках объясняется следующим образом. В полупроводниковых кристаллах атомы соединены между собой ковалентными связями, образованными при перекрытии орбиталей валентных электронов — значит, валентная зона заполнена полностью. Но под влиянием внешних факторов (температура, электрическое поле или облучения) некоторые электроны получают энергию, достаточную для отрыва от атомных ядер, и переходят из валентной зоны в зону проводимости. За счет этих электронов может происходить перенос электрического тока, обеспечивает n-проводимость — так обозначают проводимость, обусловленную перемещением электронов (от лат. слова negative).

Вследствие отрыва электронов от атома и перехода в зону проводимости, на их местах в валентной зоне возникают электронные вакансии (не полностью заняты электронами энергетические уровни) — так называемые дырки , количество которых равно количеству электронов.

В валентной зоне электрон, который размещается рядом с дыркой, перемещается на это свободное место, оставляя после себя новую дырку, на которую передвигается следующий электрон и т.д. Такой дрейф электронов эквивалентен перемещению дыр в противоположном направлении. В электрическом поле дырки ведут себя как положительные заряды, но следует еще раз подчеркнуть, что перемещение дырки — это не движение носителя электрического заряда, а результат перескакивание электронов. Это явление получило название p-проводимости (от лат. слова positive).

Электронно-дырочный механизм электропроводности проявляется в собственных полупроводниках — таких, которые не содержат примесей.

Если необходимо усилить проводимость n-типа в полупроводник вводят примесные доноры, атомы которых способны отдавать электроны, увеличивая проводимость. Например, в кристалле кремния Si, атомы которого имеют четыре электрона на внешнем уровне один атом Si замещается атомом Р, на внешнем уровне которого содержится пять электронов; четыре из них образуют ковалентные связи с соседними атомами Si, а один электрон находится на свободной орбитали атома фосфора. При получении кристаллом Si небольшой энергии (≈ 4,4 кДж / моль) этот электрон легко отщепляется от примесного атома Р и переходит из валентной зоны через запрещенную зону в зону проводимости, то есть играет роль переносчика электрического тока. Но в целом кристалл Si сохраняет электронейтральность. По отношению к кремнию Si примесными донорами являются р-элементы V группы.

При необходимости усиления проводимости р-типа вводят примесные акцепторы, Атомы которых способны повышать дырочную проводимость. Например, в кристалле Si (с четырьмя электронами на внешнем уровне атома) один из атомов Si замещается атомом бора B, на внешнем энергетическом уровне которого находится только три электрона. При образовании атомом бора четырех ковалентных связей с атомами Si возникает дефицит одного электрона в каждом узле кристаллической решетки, содержащий атом B. При получении таким кристаллом небольшого количества энергии атом бора захватывает электрон из соседнего ковалентной связи, превращаясь в отрицательно заряженный ион, а на месте захваченного электрона возникает дырка. Если поместить кристалл в электрическое поле, то дырка становится как бы носителем заряда. Однако электрическая нейтральность кристалла не нарушается. По отношению к кремнию Si примесными акцепторами могут быть р-элементы III группы, а также Zn, Fe, Mn.

В зависимости от механизма проводимости полупроводники делят на таки типы:

  • электронные полупроводники (n-типа)
  • дырочные полупроводники (p -типа).

Иногда полупроводники классифицируют по их химической природе, рассматривая неорганические и органические полупроводники. Однако чаще всего для полупроводников используют другую классификацию, согласно которой их делят на простые и сложные.

Простые полупроводники

Они бывают двух типов:

  1. Собственные полупроводники, к которым относятся сверхчистые кристаллы простых веществ (Si, Ge, Se, Te, B); для собственных полупроводников присуща p-проводимость;
  2. Примесные полупроводники, в которых количество электронов не равно количеству дырок, так как атомы примесей, содержащих в кристаллической решетке основного вещества, могут или отдавать электроны (донорные примеси), или захватывать их (акцепторные примеси). Например, донорные примеси Р, As, Sb в кристаллической структуре германия Ge отдают электроны, в результате чего электронная проводимость таких полупроводников превышает дырочную. Если же в кристаллическую решетку германия ввести акцепторные примеси (Al, Ga, In), то дырочная проводимость такого полупроводника будет преобладать над электронной.

Сложные полупроводники

Сложные полупроводники отличаются нестехиометрическим составом и содержат одновременно донорные и акцепторные примеси. При близости концентраций донорных и акцепторных примесей полупроводник называется компенсированным. В зависимости от того, какой компонент является избыточным, сложный полупроводник может проявлять проводимость n- или p- типа. К сложным полупроводникам относятся соединения р-элементов III группы с р-элементами V группы (GaP, InP, InSb), p-элементов II группы с элементами V и группы (ZnS, ZnTe, CdSe, CdS), p-элементов IV группы (ShC ). Известно много полупроводников более сложной природы (GaAsxP1-x , InxGa1-xSb, ZnS1± x ), в которых варьирование проводимости достигается за счет изменения соотношения атомов металла и неметалла в кристалле.

Полупроводники широко применяются для изготовления электронных приборов, используемых для преобразования и передачи информации (диоды, транзисторы, фото- и термоэлектронные приборы, микросхемы), также как лазерные материалы, в голографии и др.

Проводники, полупроводники и диэлектрики. Их краткая характеристика и практическое применение.

Электрическое поле

1.Электрическая энергия, ее свойства, особенности и применение. Основные этапы развития отечественной электроэнергетики.

Электрическая энергия широко применяется во всех областях промышленности, сельского хозяйства, транспорта, автоматики, вычислительной техники, электроники, радиотехники и в быту благодаря своим уникальным свойствам:

а)не сложно передается на большие расстояния (на сотни и тысячи километров) с небольшими потерями;

б)она легко преобразуется в другие виды энергии (тепловую, механическую, химическую и др.). И наоборот, другие виды энергии (тепловая, ядерная, механическая и т.п.) преобразуются в электрическую;

в)легко дробится и распределяется по приемникам различной мощности (от десятков мегаватт до долей ватта);

г)легко контролируется различными электроприборами и регулируется электротехническими устройствами.

Замечательные свойства электроэнергии были замечены еще на заре развития науки и техники по изучению и использованию этого вида энергии. Так, например,

в 1802-1803 г.г. В.В.Петров открыл явление электрической дуги и указал на возможность использования ее электросварки и плавления металлов;

А.Г.Столетов в 1872 г. провел исследования магнитных свойств железа;

в 1876 г. П.Н.Яблочков изобрел электрическую свечу;

М.О.Доливо-Добровольский в 1888 г. изобрел трехфазную систему электрических цепей;

А.С.Попов в 1895 г. изобрел беспроволочный телеграф и построил первый радиоприемник;

начала работать в 1932 г. Днепровская ГЭС;

построена в 1954 г. первая в мире атомная электростанция;

построена в 1973 г. атомная электростанция на быстрых нейтронах (в г. Шевченко).

2.Развитие электротехники в Республике Беларусь.

Электротехника – это наука о производстве, передаче потреблении и использовании электрической энергии. Электрическая энергия – самый удобный вид энергии. Электроэнергию можно передавать на большие расстояния при помощи воздушных и кабельных линий с малыми потерями, использовать в больших и малых порциях – в двигателях мощностью в сотни киловатт и в микродвигателях с мощностью, равной долям ватта. Возможность применения автоматического и дистанционного управления работой электрических машин и аппаратов повышает функциональные возможности технологического и производственного оборудования, повышает производительность труда, а также культуру труда и быта.

Читать еще:  Как проложить кабель под дорогой и какие требования нужно учитывать

Сегодня в Республике Беларусь работают:

– Лукомльская ГРЭС мощностью 2412 МВт;

– Березовская ГРЭС мощностью 1060 МВт;

– Белорусская ГРЭС мощностью 16,9 МВт;

– Гродненская гидроэлектростанция мощностью 18,6 МВт и 28 районных ТЭЦ, общая установленная мощность тепловых электростанций составляет 7718,8 МВт.

Кроме тепловых электростанций работают 26 малых гидроэлектростанций общей мощностью

12,1 МВт и 23 блок-станции промышленных предприятий установленной мощностью 184,43 МВт.

В настоящее время в Беларуси строится первая атомная электрическая станция недалеко от г.п. Островец.

В г. Могилеве успешно работает предприятие по выпуску электрических машин – завод «Электродвигатель», в Минске функционирует электротехнический завод, а г. Молодечно – завод силовых полупроводниковых вентилей и др.

3.Характеристики электрического поля: напряженность, потенциал, электрическое напряжение.

Любой покоящийся электрический заряд создает вокруг себя электрическое поле. Такое поле – это особый вид материи, в котором создается действие на электрические заряды. Если

в электрическое поле, которое создает какой-либо неподвижный заряд q1, поместить так называемый пробный заряд q2, т.е. такой заряд, величина которого настолько мала, что своим присутствием не может заметно изменить поле заряда q1, то на него, на этот пробный заряд q2, со стороны поля будет действовать сила F.

Действующая на пробный заряд q2 сила F зависит не только от величины заряда q1, который создает поле, но и от величины пробного заряда q2. Если брать различные по величине

пробные зарядыq2, то будут разными и силы F. Но для всех пробных зарядов отношение

F/q2,

будет одинаковым для данной точки поля. Это отношение является силовой характеристикой

электрического поля и называется напряженностью электрического поля E в данной точке:

E = F/q2.

Напряженностью электрического поля в данной точке называется физическая величина, которая численно равна силе, действующей на единичный заряд, находящийся в данной точке поля.

Электрическое поле для наглядности изображают силовыми линиями напряженности электрического поля.

Потенциал. Электрическое поле характеризуется не только своей напряженностью, но и потенциалом точки поля. Потенциал электрического поля в данной точке численно равен работе, которую выполнят силы этого поля при перемещении единичного заряда из этой точки в бесконечность (или в точку, потенциал которой считают равным нулю, т.е. Ф = 0):

Ф = А/q2.

За единицу потенциала принят 1В. Потенциал электрического поля в данной точке равен 1В, если при перенесении единичного заряда величиной в 1Кл из бесконечности в данную точку поля совершается работа в 1Дж. Есть и другое определение:потенциал поляв данной точке равен 1В, если заряд величиной в 1Кл, находясь в этой точке, обладает потенциальной энергией величиной в 1Дж. Электрическое поле, обладающее потенциалом в каждой точке, называют потенциальным.

На практикеважноезначение имеет не потенциал поля в точке, а разность потенциаловдвух точек поля. Эта разность потенциалов равна работе, которую совершают силы поля при перемещении единичного заряда между этими точками:

Эта работа и есть электрическое напряжение между двумя точками электрического поля (или электрической цепи).

В потенциальном поле такая работа не зависит от формы пути, по которому перемещается этот заряд.

Проводники, полупроводники и диэлектрики. Их краткая характеристика и практическое применение.

Все вещества в зависимости от электрической проводимости и зависимости этой проводимости от ряда физических факторов делятся на проводники, полупроводники и диэлектрики (электроизоляционные материалы).

Проводники. Проводники – это вещества, которые характеризуются наличием в них большого количества носителей зарядов, способных перемещаться под действием электрического поля. В качестве проводников чаще всего используют металлы, электролиты и плазмы. В металлах носителями зарядов являются электроны, которые свободно перемещаются между атомами. В электролитах носителями являются положительные и отрицательные ионы, а в плазме – свободные электроны и ионы. В металлическом теле проводника под действием внешнего электрического поля напряженностью Е свободные электроны перемещаются вдоль линии напряженности к одной из поверхностей тела проводника, которая получает отрицательный заряд. Тогда противоположная поверхность тела проводника получает такой же величины положительный заряд по закону сохранения заряда. Такое явление смещения зарядов на поверхности проводника, который помещен в электрическое поле, называют электростатической индукцией.

В результате разделения зарядов создается внутреннее электрическое поле Евн. Оно по направлению противоположно внешнему.

При равенстве напряженностей этих полей разделение зарядов прекращается и результирующая напряженность электрического поля внутри проводника равна нулю.

Диэлектрики. В диэлектриках количество свободных заряженных частиц чрезвычайно мало, поэтому направленным движением этих частиц (током в диэлектрике) можно пренебречь.

Различают диэлектрики с полярными и неполярными молекулами. Полярные молекулы можно представить в виде электрического диполя, т.е. пары разноименных зарядов, которые расположены на небольшом расстоянии друг от друга. При отсутствии внешнего электрического поля диполи ориентированы произвольно. При возникновении внешнего электрического поля диполи под действием его сил поворачиваются в направлении напряженности внешнего поля.

В неполярных молекулах внешнее поле смещает заряженные частицы вдоль направления поля, результате чего они приобретают свойства диполей. Ориентация либо смещение зарядов диполей под действием сил внешнего электрического поля называется поляризацией диэлектрика.

При снятии внешнего поля диполь занимает прежнее положение. Однако имеются такие диэлектрики, которые, будучи поляризованы внешним электрическим полем, сохраняют остаточную поляризацию (например, сегнетоэлектрики, электреты). Явление поляризации присуще только диэлектрикам. Величину, которая показывает, во сколько раз диэлектрическая проницаемость конкретного диэлектрика больше диэлектрической проницаемости воздуха, называют относительной диэлектрической проницаемостью (например, слюды – 4-6, фарфора – 5-8 и т.д.).

Полупроводники.Они имеют промежуточную проводимость между проводниками и диэлектриками. К полупроводникам относятся такие элементы, как кремний, германий, селен, окислы некоторых металлов и др. Для полупроводников характерны:

– сильное влияние примесей на электропроводность;

– сильная зависимость электропроводности от температуры;

– большая зависимость электропроводности от различных излучений;

– зависимость электропроводности от действия механических сил.

Явление возникновения в полупроводнике подвижных носителей зарядов (электронов и дырок) под действием температуры называют термогенерацией носителей зарядов. Под дыркой понимают заряженную частицу с положительным зарядом, который образовался вследствие недостатка электронов в атоме.

Электропроводность, вызванная в полупроводнике термогенерацией носителей зарядов, называется собственной электропроводностью. Свободные носители, перемещаемые по кристаллу, могут заполнить дырки. Этот процесс называется рекомбинацией. Таким образом, в полупроводнике идут два процесса: термогенерация и рекомбинация. В результате устанавливается равновесное состояние зарядов. Дополнительно к собственной проводимости добавляется еще и примесная проводимость, если в полупроводнике имеются примеси других веществ.

В качестве примесей используют трех- и пятивалентные элементы. Примеси замещают в кристаллической решетке атомы основного элемента. Пятивалентную примесь (мышьяк, фосфор, сурьма и др.) называют донорной. Эта примесь образует с соседними атомами четыре ковалентные связи. Оставшийся пятый валентный электрон имеет очень слабую связь. Она в десятки раз меньше ковалентной, поэтому под воздействием температуры он освобождается в первую очередь. Такой полупроводник называют полупроводником n-типа или полупроводником с электронной проводимостью.

Если в кристаллическую решетку ввести в качестве примеси трехвалентные элементы, называемые акцепторной примесью (например, бор, индий, алюминий и др.), то образуются незаполненные ковалентные связи. Незаполненная электроном связь образует на этом месте дырку.

Полупроводник с такой примесью называют полупроводником p-типаили полупроводником с дырочной проводимостью.

Носители заряда, концентрация которых в данном полупроводнике преобладает, называются основными. Неосновными называются носители заряда, концентрация которых меньше, чем концентрация основных носителей. Примеси перестают оказывать влияние на концентрацию носителей заряда при предельной температуре. Например, для германия она составляет 75 градусов, для кремния – 125 градусов по шкале Цельсия.

Ссылка на основную публикацию
Adblock
detector